Skip to main content
Log in

Transpositional behaviour of the Ds element in the Ac/Ds system in rice

  • Articles
  • Genetics
  • Published:
Chinese Science Bulletin

Abstract

Insertional mutagenesis based on maize Activator/Dissociator (Ac/Ds) transposons is becoming a major approach used to produce a saturated mutant collection in rice. In this research, Ds-T-DNA transformed homozygotes were crossed with Ac-T-DNA transformed homozygotes in order to establish an Ac/Ds transposon system in rice. The successive investigation of Ds transposition from F1 to F5 generations indicated that the frequencies of germinal transposition increased over successive generations and reached 54.2% in F3 generation. The Ds transposition pattern revealed that a Ds transposition induced an approximately 170-bp deletion of T-DNA sequence and another Ds transposition carried a 272-bp T-DNA sequence. Using thermal asymmetric interlaced PCR (TAIL-PCR), some flanking sequences of the Ds element were amplified. Analyses of 17 Ds-flanking sequences showed that five Ds were inserted into gene regions. The Ds could transpose not only to the linked sites but also to the unlinked sites. The frequency of inter-chromosomal transposition of Ds was 33.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izawa T, Shimamoto K. Becoming a model plant: The importance of rice to plant science. Trends Plant Sci, 1996, 1(3): 95–99

    Article  Google Scholar 

  2. Barry G F. The use of the Monsanto draft rice genome sequence in research. Plant Physiol, 2001, 125: 1164–1165

    Article  Google Scholar 

  3. Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L.ssp. japonica). Science, 2002, 296: 92–100

    Article  Google Scholar 

  4. Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79–92

    Article  Google Scholar 

  5. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793–800

    Article  Google Scholar 

  6. Jeon J S, An G. Gene tagging in rice: A high throughput system for functional genomics. Plant Sci, 2001, 161: 211–219

    Article  Google Scholar 

  7. Jeon J S, Lee S, Jung K H, et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22: 561–570

    Article  Google Scholar 

  8. An S, Park S, Jeong D H, et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol, 2003, 133: 2040–2047

    Article  Google Scholar 

  9. Johnson A A T, Hibberd J M, Gay C, et al. Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J, 2005, 41: 779–789

    Article  Google Scholar 

  10. Jeong D H, An S, Park S, et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J, 2006, 45(1): 123–132

    Article  Google Scholar 

  11. Zhang J W, Li C S, Wu C Y, et al. RMD: A rice mutant database for functional analysis of the rice genome. Nucleic Acids Res, 2006, 34: 745–748

    Article  Google Scholar 

  12. Izawa T, Ohnishi T, Nakano T, et al. Transposon tagging in rice. Plant Mol Biol, 1997, 35: 219–229

    Article  Google Scholar 

  13. Enoki H, Izawa T, Kawahara M, et al. Ac as a tool for the functional genomics of rice. Plant J, 1999, 19(5): 605–613

    Article  Google Scholar 

  14. Chin H G, Choe M S, Lee S H, et al. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J, 1999, 19(5): 615–623

    Article  Google Scholar 

  15. Nakagawa Y, Machida C, Machida Y, et al. Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol, 2000, 41: 733–742

    Google Scholar 

  16. Greco R, Ouwerkerk P B F, de Kam R J, et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet, 2003, 108: 10–24

    Article  Google Scholar 

  17. Kolesnik T, Szeverenyi L, Bachmann D, et al. Establishing an efficient Ac/Ds tagging system in rice: Large-scale analysis of Ds flanking sequence. Plant J, 2004, 37: 301–314

    Google Scholar 

  18. Wang J, Li L, Wan X S, et al. Generation and molecular analysis of a population of transgenic rice plants carrying Ds element. Acta Phytophysiol Sin (in Chinese), 2000, 26(6): 501–506

    Google Scholar 

  19. Zhu Z G, Fu Y P, Xiao H, et al. Construction of rice mutant pool inserted the maize transposable element Ac/Ds and genetic analysis for several mutants. Chin J Biotech (in Chinese), 2001, 17(3): 288–292

    Google Scholar 

  20. Chen Z G, Wang J, Zhang Z M, et al. Selection and identification of Ds insertion homozygotes in Rice (Oryza sativa L.). J Plant Physiol Mol Biol (in Chinese), 2003, 29(4): 337–341

    Google Scholar 

  21. Chen Z G, Wang J, Zhang Z M, et al. Genetic analysis of a heading-delayed mutant by T-DNA insertion in rice (Oryza sativa L.). J Plant Physiol Mol Biol (in Chinese), 2004, 30(1): 75–80

    Google Scholar 

  22. Chen Z G, Wang J, Zhang Z M, et al. Genetic analysis of a rolled leaf mutation by T-DNA(Ds) insertion in Oryza sativa. J South China Agri Univ (in Chinese), 2006, 27(1): 1–4

    Google Scholar 

  23. Zhang Z M, Zhu H T, Wang J, et al. Genetic analysis of a more-tiller mutation by T-DNA insertion in rice(Oryza sativa L.). Acta Agron Sin (in Chinese), 2006, 32(11): 1737–1741

    Google Scholar 

  24. Upadhyaya N M, Zhou X R, Zhu Q H, et al. An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol, 2002, 29: 547–559

    Article  Google Scholar 

  25. Zheng K L, Huang N, Bennett J. PCR-based marker-assisted selection in rice breeding. IRRI discussion paper series No.12. Los Banos: International Rice Research Institute, 1995

    Google Scholar 

  26. Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L). Mol Gen Genet, 1996, 252: 597–607

    Google Scholar 

  27. Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25: 674–681

    Article  Google Scholar 

  28. Bancroft I, Dean C. Factors affecting the excision frequency of the maize transposable element Ds in Arabidopsis thaliana. Mol Gen Genet, 1993, 240: 65–72

    Article  Google Scholar 

  29. Smith D, Yanai Y, Liu Y G, et al. Characterization and mapping of Ds-GUS-T-DNA lines for targeted insertional mutagenesis. Plant J, 1996, 10(4): 721–732

    Article  Google Scholar 

  30. Zhu Z G, Fu Y P, Xiao H, et al. Ac/Ds transposition activity in transgenic rice population and DNA flanking sequence of Ds insertion sites. Acta Bot Sin, 2003, 45: 102–107

    Google Scholar 

  31. Jin W Z, Wang S M, Xu M, et al. Characterization of enhancer trap and gene trap harboring Ac/Ds transposon in transgenic rice. J Zhejiang Uinv Sci, 2004, 5(4): 390–399

    Article  Google Scholar 

  32. Kim C M, Piao H L, Park S J, et al. Rapid, large-scale generation of Ds transposant lines and analysis of Ds insertion sites in rice. Plant J, 2004, 39: 252–263

    Article  Google Scholar 

  33. Carroll B J, Klimyuk V I, Thomas C M, et al. Germinal transposition of the maize element dissociation from T-DNA loci in tomato. Genetics, 1995, 139: 407–420

    Google Scholar 

  34. Page D R, Köhler C, da Costa-nunes J A, et al. Intrachromosomal excision of a hybrid Ds element induce large genomic deletion in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101(9): 2969–2974

    Article  Google Scholar 

  35. Scholz S, Lörz H, Lütticke S. Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.). Mol Gen Genet, 2001, 264: 653–661

    Article  Google Scholar 

  36. Zhu Q H, Hoque M S, Dennis E S, et al. Ds tagging of branched floretless 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol, 2003, 3(6): 1–13

    Google Scholar 

  37. Pinheiro M M, Zhou X R, Zhu Q H, et al. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep, 2005, 23: 819–833

    Article  Google Scholar 

  38. Zhu Q H, Ramm K, Shivakkumar R, et al. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135: 1514–1525

    Article  Google Scholar 

  39. Sun B Y, Tan J Z, Lu X P, et al. Amplification of Ds flanking sequences from rice genomic DNA of hybrids of Ac × Ds lines and the analysis of Ds insertion. Hereditas (in Chinese), 2006, 28(12): 1555–1561

    Article  Google Scholar 

  40. Luan W J, Sun Z X. Ac/Ds tagging system and functional genomics in rice. J Plant Physiol Mol Biol (in Chinese), 2005, 31(5): 441–450

    Google Scholar 

  41. Jeong D H, An S, Kang H G, et al. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol, 2002, 130: 1636–1644

    Article  Google Scholar 

  42. Ito Y, Eiguchi M, Kurata N. Establishment of an enhancer trap system with Ds and GUS for functional genomics in rice. Mol Gen Genomics, 2004, 271: 639–650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang GuiQuan.

Additional information

Contributed equally to this work

Supported by National Basic Research Program of China (Grant No. G19990116)

About this article

Cite this article

Liu, F., Zhang, X., Zhang, Z. et al. Transpositional behaviour of the Ds element in the Ac/Ds system in rice. CHINESE SCI BULL 52, 2789–2796 (2007). https://doi.org/10.1007/s11434-007-0415-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0415-6

Keywords

Navigation