Electro-optic lithium niobate metasurfaces

Abstract

Many applications of metasurfaces require an ability to dynamically change their properties in the time domain. Electrical tuning techniques are of particular interest, since they pave a way to on-chip integration of metasurfaces with optoelectronic devices. In this work, we propose and experimentally demonstrate an electro-optic lithium niobate (EO-LN) metasurface that shows dynamic modulations to phase retardation of transmitted light. Quasi-bound states in the continuum (QBIC) are observed from this metasurface. By applying external electric voltages, the refractive index of lithium niobate (LN) is changed by Pockels EO nonlinearity, leading to efficient phase modulations to the transmitted light around the QBIC wavelength. The EO-LN metasurface developed in this study opens up new routes for potential applications in the field of displaying, pulse shaping, and spatial light modulating.

This is a preview of subscription content, access via your institution.

References

  1. 1

    N. I. Zheludev, and Y. S. Kivshar, Nat. Mater. 11, 917 (2012).

    ADS  Article  Google Scholar 

  2. 2

    G. Li, S. Zhang, and T. Zentgraf, Nat. Rev. Mater. 2, 17010 (2017).

    ADS  Article  Google Scholar 

  3. 3

    A. M. Shaltout, V. M. Shalaev, and M. L. Brongersma, Science 364, eaat3100 (2019).

    ADS  Article  Google Scholar 

  4. 4

    Q. He, S. Sun, and L. Zhou, Research 2019, 1 (2019).

    Google Scholar 

  5. 5

    M. Ren, W. Cai, and J. Xu, Adv. Mater. 32, 1806317 (2020).

    Article  Google Scholar 

  6. 6

    Q. Wang, G. H. Yuan, K. S. Kiang, K. Sun, B. Gholipour, E. T. F. Rogers, K. Huang, S. S. Ang, N. I. Zheludev, and J. H. Teng, Appl. Phys. Lett. 110, 201110 (2017).

    ADS  Article  Google Scholar 

  7. 7

    M. Taghinejad, H. Taghinejad, Z. Xu, K. T. Lee, S. P. Rodrigues, J. Yan, A. Adibi, T. Lian, and W. Cai, Nano Lett. 18, 5544 (2018).

    ADS  Article  Google Scholar 

  8. 8

    M. X. Ren, W. Wu, W. Cai, B. Pi, X. Z. Zhang, and J. J. Xu, Light Sci. Appl. 6, e16254 (2017).

    Article  Google Scholar 

  9. 9

    L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, Nat. Photon. 11, 628 (2017).

    ADS  Article  Google Scholar 

  10. 10

    C. Guan, J. Shi, J. Liu, H. Liu, P. Li, W. Ye, and S. Zhang, Laser Photon. Rev. 13, 1800242 (2019).

    ADS  Article  Google Scholar 

  11. 11

    J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, Nano Lett. 11, 2142 (2011).

    ADS  Article  Google Scholar 

  12. 12

    X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, Nano Lett. 15, 4255 (2015).

    ADS  Article  Google Scholar 

  13. 13

    G. Di Martino, S. Tappertzhofen, S. Hofmann, and J. Baumberg, Small 12, 1334 (2016).

    Article  Google Scholar 

  14. 14

    X. Duan, S. Kamin, and N. Liu, Nat. Commun. 8, 14606 (2017).

    ADS  Article  Google Scholar 

  15. 15

    Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, Appl. Phys. Lett. 96, 143105 (2010), arXiv: 0912.4288.

    ADS  Article  Google Scholar 

  16. 16

    A. Karvounis, V. V. Vogler-Neuling, F. U. Richter, E. Deénervaud, M. Timofeeva, and R. Grange, Adv. Opt. Mater. 8, 2000623 (2020).

    Article  Google Scholar 

  17. 17

    M. M. Salary, A. Forouzmand, and H. Mosallaei, ACS Photon. 4, 63 (2017).

    Article  Google Scholar 

  18. 18

    H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).

    ADS  Article  Google Scholar 

  19. 19

    N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, ACS Photon. 2, 216 (2015).

    Article  Google Scholar 

  20. 20

    M. Decker, C. Kremers, A. Minovich, I. Staude, A. E. Miroshnichenko, D. Chigrin, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, Opt. Express 21, 8879 (2013), arXiv: 1302.4484.

    ADS  Article  Google Scholar 

  21. 21

    T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Science 325, 1518 (2009), arXiv: 1003.0140.

    ADS  Article  Google Scholar 

  22. 22

    Z. Y. Jia, F. Z. Shu, Y. J. Gao, F. Cheng, R. W. Peng, R. H. Fan, Y. Liu, and M. Wang, Phys. Rev. Appl. 9, 034009 (2018).

    ADS  Article  Google Scholar 

  23. 23

    J. Lee, S. Jung, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alú, and M. A. Belkin, Adv. Opt. Mater. 2, 1057 (2014).

    Article  Google Scholar 

  24. 24

    G. Gaborit, J. Dahdah, F. Lecoche, P. Jarrige, Y. Gaeremynck, E. Duraz, and L. Duvillaret, IEEE Trans. Plasma Sci. 41, 2851 (2013).

    ADS  Article  Google Scholar 

  25. 25

    T. S. El-Bawab, Optical Switching (Springer Science & Business Media, Heidelberg, 2008).

    Google Scholar 

  26. 26

    M. Levy, R. M. Osgood Jr., R. Liu, L. E. Cross, G. S. Cargill Iii, A. Kumar, and H. Bakhru, Appl. Phys. Lett. 73, 2293 (1998).

    ADS  Article  Google Scholar 

  27. 27

    P. Rabiei, and P. Gunter, Appl. Phys. Lett. 85, 4603 (2004).

    ADS  Article  Google Scholar 

  28. 28

    G. Poberaj, H. Hu, W. Sohler, and P. Günter, Laser Photon. Rev. 6, 488 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Z. Fang, Y. Xu, M. Wang, L. Qiao, J. Lin, W. Fang, and Y. Cheng, Sci. Rep. 7, 45610 (2017), arXiv: 1701.05374.

    ADS  Article  Google Scholar 

  30. 30

    Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, Adv. Mater. 32, 1806452 (2020).

    Article  Google Scholar 

  31. 31

    D. Sun, Y. Zhang, D. Wang, W. Song, X. Liu, J. Pang, D. Geng, Y. Sang, and H. Liu, Light Sci. Appl. 9, 197 (2020).

    ADS  Article  Google Scholar 

  32. 32

    M. Yu, Y. Okawachi, R. Cheng, C. Wang, M. Zhang, A. L. Gaeta, and M. Lončar, Light Sci. Appl. 9, 9 (2020), arXiv: 1909.00249.

    ADS  Article  Google Scholar 

  33. 33

    Y. A. Liu, X. S. Yan, J. W. Wu, B. Zhu, Y. P. Chen, and X. F. Chen, Sci. China-Phys. Mech. Astron. 64, 234262 (2021), arXiv: 2009.12900.

    Article  Google Scholar 

  34. 34

    Q. Luo, Z. Z. Hao, C. Yang, R. Zhang, D. H. Zheng, S. G. Liu, H. D. Liu, F. Bo, Y. F. Kong, G. Q. Zhang, and J. J. Xu, Sci. China-Phys. Mech. Astron. 64, 234263 (2021).

    Article  Google Scholar 

  35. 35

    G. L. Long, Sci. China-Phys. Mech. Astron. 64, 234261 (2021).

    Article  Google Scholar 

  36. 36

    J. T. Lin, Y. X. Xu, Z. W. Fang, M. Wang, N. W. Wang, L. L. Qiao, W. Fang, and Y. Cheng, Sci. China-Phys. Mech. Astron. 58, 114209 (2015), arXiv: 1405.6473.

    Article  Google Scholar 

  37. 37

    M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, and Y. Cheng, Quantum Eng. 1, e9 (2019).

    Article  Google Scholar 

  38. 38

    C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).

    ADS  Article  Google Scholar 

  39. 39

    M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, Nat. Photon. 13, 359 (2019), arXiv: 1807.10362.

    ADS  Article  Google Scholar 

  40. 40

    T. Ding, Y. Zheng, and X. Chen, Opt. Lett. 44, 1524 (2019).

    ADS  Article  Google Scholar 

  41. 41

    M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, and Q. Lin, Nat. Commun. 11, 1 (2020).

    ADS  Google Scholar 

  42. 42

    A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, Nat. Photon. 1, 407 (2007), arXiv: 0705.2392.

    ADS  Article  Google Scholar 

  43. 43

    M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, Nature 568, 373 (2019), arXiv: 1809.08636.

    ADS  Article  Google Scholar 

  44. 44

    F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, and L. Yang, Adv. Mater. 27, 8075 (2015).

    Article  Google Scholar 

  45. 45

    B. Gao, M. Ren, W. Wu, H. Hu, W. Cai, and J. Xu, Laser Photon. Rev. 13, 1800312 (2019), arXiv: 1810.11928.

    ADS  Article  Google Scholar 

  46. 46

    B. Fang, H. Li, S. Zhu, and T. Li, Photon. Res. 8, 1296 (2020).

    Article  Google Scholar 

  47. 47

    J. Ma, M. Ren, W. Wu, W. Cai, and J. Xu, arXiv: 2002.06594.

  48. 48

    A. Fedotova, M. Younesi, J. Sautter, A. Vaskin, F. J. F. Löchner, M. Steinert, R. Geiss, T. Pertsch, I. Staude, and F. Setzpfandt, Nano Lett. 20, 8608 (2020).

    ADS  Article  Google Scholar 

  49. 49

    J. Von Neuman, and E. Wigner, Phys. Z 30, 465 (1929).

    Google Scholar 

  50. 50

    H. Friedrich, and D. Wintgen, Phys. Rev. A 32, 3231 (1985).

    ADS  Article  Google Scholar 

  51. 51

    D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Phys. Rev. Lett. 100, 183902 (2008).

    ADS  Article  Google Scholar 

  52. 52

    C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, Nat. Rev. Mater. 1, 16048 (2016).

    ADS  Article  Google Scholar 

  53. 53

    M. Wang, Y. Z. Wang, X. S. Xu, Y. Q. Hu, and G. L. Long, Opt. Express 27, 63 (2019).

    ADS  Article  Google Scholar 

  54. 54

    K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, Phys. Rev. Lett. 121, 193903 (2018), arXiv: 1809.00330.

    ADS  Article  Google Scholar 

  55. 55

    J. Xiang, Y. Xu, J. D. Chen, and S. Lan, Nanophotonics 9, 133 (2020).

    Article  Google Scholar 

  56. 56

    Z. Liu, Y. Xu, Y. Lin, J. Xiang, T. Feng, Q. Cao, J. Li, S. Lan, and J. Liu, Phys. Rev. Lett. 123, 253901 (2019).

    ADS  Article  Google Scholar 

  57. 57

    Z. Huang, M. Wang, Y. Li, J. Shang, K. Li, W. Qiu, J. Dong, H. Guan, Z. Chen, and H. Lu, arXiv: 2006.10908.

  58. 58

    S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, Phys. Rev. Lett. 121, 253901 (2018), arXiv: 1808.08244.

    ADS  Article  Google Scholar 

  59. 59

    S. Han, L. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. G. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, and R. Singh, Adv. Mater. 31, 1901921 (2019).

    Article  Google Scholar 

  60. 60

    B. Wang, W. Liu, M. Zhao, J. Wang, Y. Zhang, A. Chen, F. Guan, X. Liu, L. Shi, and J. Zi, Nat. Photon. 14, 623 (2020), arXiv: 1909.12618.

    ADS  Article  Google Scholar 

  61. 61

    L. Carletti, K. Koshelev, C. De Angelis, and Y. Kivshar, Phys. Rev. Lett. 121, 033903 (2018), arXiv: 1804.02947.

    ADS  Article  Google Scholar 

  62. 62

    S. D. Krasikov, A. A. Bogdanov, and I. V. Iorsh, Phys. Rev. B 97, 224309 (2018), arXiv: 1803.10980.

    ADS  Article  Google Scholar 

  63. 63

    A. P. Anthur, H. Zhang, R. Paniagua-Dominguez, D. A. Kalashnikov, S. T. Ha, T. W. W. Maß, A. I. Kuznetsov, and L. Krivitsky, Nano Lett. 20, 8745 (2020).

    ADS  Article  Google Scholar 

  64. 64

    A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, Nature 541, 196 (2017), arXiv: 1508.05164.

    ADS  Article  Google Scholar 

  65. 65

    C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, and Q. Song, Science 367, 1018 (2020).

    ADS  Article  Google Scholar 

  66. 66

    S. Romano, G. Zito, S. Torino, G. Calafiore, E. Penzo, G. Coppola, S. Cabrini, I. Rendina, and V. Mocella, Photon. Res. 6, 726 (2018).

    Article  Google Scholar 

  67. 67

    A. Leitis, A. Tittl, M. Liu, B. H. Lee, M. B. Gu, Y. S. Kivshar, and H. Altug, Sci. Adv. 5, eaaw2871 (2019).

    ADS  Article  Google Scholar 

  68. 68

    R. Geiss, S. Diziain, M. Steinert, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, Phys. Status Solidi A 211, 2421 (2014).

    ADS  Article  Google Scholar 

  69. 69

    W. Zhang, W. Gao, L. Huang, D. Mao, B. Jiang, F. Gao, D. Yang, G. Zhang, J. Xu, and J. Zhao, Opt. Express 23, 17576 (2015).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to MengXin Ren or JingJun Xu.

Additional information

This work was supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030009), the National Key R&D Program of China (Grant Nos. 2017YFA0305100, 2017YFA0303800, and 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 92050114, 91750204, 61775106, 11904182, 12074200, and 11774185), the 111 Project (Grant No. B07013), PCSIRT (Grant No. IRT0149), the Open Research Program of Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Fundamental Research Funds for the Central Universities (Grant Nos. 010-63201003, 010-63201008, and 010-63201009), and Tianjin Youth Talent Support Program. We thank the Nanofabrication Platform of Nankai University for fabricating the samples.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Ren, M., Wu, W. et al. Electro-optic lithium niobate metasurfaces. Sci. China Phys. Mech. Astron. 64, 240362 (2021). https://doi.org/10.1007/s11433-021-1668-y

Download citation

Keywords

  • lithium niobate metasurfaces
  • electro-optic modulation
  • bound states in the continuum
  • resonance