Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2

Abstract

Co3Sn2S2 is a recently identified magnetic Weyl semimetal in Shandite compounds. Upon cooling, Co3Sn2S2 undergoes a ferromagnetic transition with c-axis polarized moments (∼0.3 µB/Co) around TC = 175 K, followed by another magnetic anomaly around TA ≈ 140 K. A large intrinsic anomalous Hall effect is observed in the magnetic state below TC with a maximum of anomalous Hall angle near TA. Here, we report an elastic neutron scattering on the crystalline lattice of Co3Sn2S2 in a magnetic field up to 10 T. A strongly anisotropic magnetoelastic response is observed-while only a slight enhancement of the Bragg peaks is observed when B//c. The in-plane magnetic field (B//ab) dramatically suppresses the Bragg peak intensity probably by tilting the moments and lattice toward the external field direction. The in-plane magnetoelastic response commences from TC, and as it is further strengthened below TA, it becomes nonmonotonic against the field between TA and TC because of the competition from another in-plane magnetic order. These results suggest that a magnetic field can be employed to tune the Co3Sn2S2 lattice and its related topological states.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, Science 302, 92 (2003), arXiv: cond-mat/0310232.

    ADS  Article  Google Scholar 

  2. 2

    N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010), arXiv: 0904.4154.

    ADS  Article  Google Scholar 

  3. 3

    A. A. Zyuzin, S. Wu, and A. A. Burkov, Phys. Rev. B 85, 165110 (2012), arXiv: 1201.3624.

    ADS  Article  Google Scholar 

  4. 4

    H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Adv. Phys. 64, 227 (2015), arXiv: 1508.02967.

    ADS  Article  Google Scholar 

  5. 5

    C. X. Liu, S. C. Zhang, and X. L. Qi, Annu. Rev. Condens. Matter Phys. 7, 301 (2016).

    ADS  Article  Google Scholar 

  6. 6

    B. Yan, and C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337 (2017), arXiv: 1611.04182.

    ADS  Article  Google Scholar 

  7. 7

    K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, Nat. Rev. Mater. 3, 244 (2018), arXiv: 1802.03771.

    ADS  Article  Google Scholar 

  8. 8

    J. Zou, Z. He, and G. Xu, npj Comput. Mater. 5, 96 (2019), arXiv: 1909.11999.

    ADS  Article  Google Scholar 

  9. 9

    H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015), arXiv: 1501.00060.

    Google Scholar 

  10. 10

    F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004), arXiv: cond-mat/0408417.

    ADS  Article  Google Scholar 

  11. 11

    G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011), arXiv: 1106.3125.

    ADS  Article  Google Scholar 

  12. 12

    A. A. Burkov, Phys. Rev. Lett. 113, 187202 (2014), arXiv: 1406.3033.

    ADS  Article  Google Scholar 

  13. 13

    R. Karplus, and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).

    ADS  Article  Google Scholar 

  14. 14

    E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018), arXiv: 1712.06722.

    Article  Google Scholar 

  15. 15

    Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681 (2018), arXiv: 1712.09947.

    ADS  Article  Google Scholar 

  16. 16

    H. M. Weng, Sci. China-Phys. Mech. Astron. 62, 127031 (2019).

    ADS  Article  Google Scholar 

  17. 17

    R. Weihrich, I. Anusca, and M. Zabel, Z. Anorg. Allg. Chem. 631, 1463 (2005).

    Article  Google Scholar 

  18. 18

    R. Weihrich, and I. Anusca, Z. Anorg. Allg. Chem. 632, 1531 (2006).

    Article  Google Scholar 

  19. 19

    M. A. Kassem, Y. Tabata, T. Waki, and H. Nakamura, J. Cryst. Growth 426, 208 (2015).

    ADS  Article  Google Scholar 

  20. 20

    M. A. Kassem, Y. Tabata, T. Waki, and H. Nakamura, J. Solid State Chem. 233, 8 (2016).

    ADS  Article  Google Scholar 

  21. 21

    Y. S. Dedkov, M. Holder, S. L. Molodtsov, and H. Rosner, J. Phys.-Conf. Ser. 100, 072011 (2008).

    Article  Google Scholar 

  22. 22

    W. Schnelle, A. Leithe-Jasper, H. Rosner, F. M. Schappacher, R. Pottgen F. Pielnhofer, and R. Weihrich, Phys. Rev. B 88, 144404 (2013).

    ADS  Article  Google Scholar 

  23. 23

    P. Vaqueiro, and G. G. Sobany, Solid State Sci. 11, 513 (2009).

    ADS  Article  Google Scholar 

  24. 24

    M. A. Kassem, Y. Tabata, T. Waki, and H. Nakamura, J. Phys. Soc. Jpn. 85, 064706 (2016).

    ADS  Article  Google Scholar 

  25. 25

    Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser, and Y. Sun, Phys. Rev. B 97, 235416 (2018), arXiv: 1801.00136.

    ADS  Article  Google Scholar 

  26. 26

    D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen, Science 365, 1282 (2019), arXiv: 1909.09580.

    ADS  Article  Google Scholar 

  27. 27

    N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Science 365, 1286 (2019), arXiv: 1903.00509.

    ADS  Article  Google Scholar 

  28. 28

    R. Yang, T. Zhang, L. Zhou, Y. Dai, Z. Liao, H. Weng, and X. Qiu, Phys. Rev. Lett. 124, 077403 (2020), arXiv: 1908.03895.

    ADS  Article  Google Scholar 

  29. 29

    Y. Xu, J. Zhao, C. Yi, Q. Wang, Q. Yin, Y. Wang, X. Hu, L. Wang, E. Liu, G. Xu, L. Lu, A. A. Soluyanov, H. Lei, Y. Shi, J. Luo, and Z. G. Chen, Nat. Commun. 11, 3985 (2020), arXiv: 1908.04561.

    ADS  Article  Google Scholar 

  30. 30

    M. A. Kassem, Y. Tabata, T. Waki, and H. Nakamura, Phys. Rev. B 96, 014429 (2017), arXiv: 1702.05627.

    ADS  Article  Google Scholar 

  31. 31

    Z. Guguchia, J. A. T. Verezhak, D. J. Gawryluk, S. S. Tsirkin, J. X. Yin, I. Belopolski, H. Zhou, G. Simutis, S. S. Zhang, T. A. Cochran, G. Chang, E. Pomjakushina, L. Keller, Z. Skrzeczkowska, Q. Wang, H. C. Lei, R. Khasanov, A. Amato, S. Jia, T. Neupert, H. Luetkens, and M. Z. Hasan, Nat. Commun. 11, 559 (2020).

    ADS  Article  Google Scholar 

  32. 32

    J. X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin, Z. Guguchia, B. Lian, H. Zhou, K. Jiang, I. Belopolski, N. Shumiya, D. Multer, M. Litskevich, T. A. Cochran, H. Lin, Z. Wang, T. Neupert, S. Jia, H. Lei, and M. Z. Hasan, Nat. Phys. 15, 443 (2019), arXiv: 1901.04822.

    Article  Google Scholar 

  33. 33

    J. X. Yin, N. Shumiya, Y. Jiang, H. Zhou, G. Macam, S. S. Zhang, H. O. M. Sura, Z. Cheng, Z. Guguchia, Y. Li, Q. Wang, M. Litskevich, I. Belopolski, X. Yang, T. A. Cochran, G. Chang, Q. Zhang, B. M. Andersen, Z. Q. Huang, F. C. Chuang, H. Lin, H. Lei, Z. Wang, S. Jia, and M. Z. Hasan, arXiv: 2002.11783.

  34. 34

    Y. Xing, J. Shen, H. Chen, L. Huang, Y. Gao, Q. Zheng, Y. Y. Zhang, G. Li, B. Hu, G. Qian, L. Cao, X. Zhang, P. Fan, R. Ma, Q. Wang, Q. Yin, H. Lei, W. Ji, S. Du, H. Yang, W. Wang, C. Shen, X. Lin, E. Liu, B. Shen, Z. Wang, and H. J. Gao, Nat. Commun. 11, 5613 (2020), arXiv: 2001.11295.

    ADS  Article  Google Scholar 

  35. 35

    J. Shen, Q. Zeng, S. Zhang, W. Tong, L. Ling, C. Xi, Z. Wang, E. Liu, W. Wang, G. Wu, and B. Shen, Appl. Phys. Lett. 115, 212403 (2019), arXiv: 2002.03940.

    ADS  Article  Google Scholar 

  36. 36

    C. Liu, J. L. Shen, J. C. Gao, C. J. Yi, D. Liu, T. Xie, L. Yang, S. Danilkin, G. C. Deng, W. H. Wang, S. L. Li, Y. G. Shi, H. M. Weng, E. K. Liu, and H. Q. Luo, Sci. China-Phys. Mech. Astron. 64, 217062 (2021), arXiv: 2006.07339.

    Article  Google Scholar 

  37. 37

    X. C. Xie, Sci. China-Phys. Mech. Astron. 64, 217061 (2021).

    Article  Google Scholar 

  38. 38

    B. H. Yan, Sci. China-Phys. Mech. Astron. 64, 217063 (2021).

    Article  Google Scholar 

  39. 39

    L. Chen, J. H. Chung, B. Gao, T. Chen, M. B. Stone, A. I. Kolesnikov, Q. Huang, and P. Dai, Phys. Rev. X 8, 041028 (2018), arXiv: 1807.11452.

    Google Scholar 

  40. 40

    L. Chen, J. H. Chung, T. Chen, C. Duan, A. Schneidewind, I. Radelytskyi, D. J. Voneshen, R. A. Ewings, M. B. Stone, A. I. Kolesnikov, B. Winn, S. Chi, R. A. Mole, D. H. Yu, B. Gao, and P. Dai, Phys. Rev. B 101, 134418 (2020).

    ADS  Article  Google Scholar 

  41. 41

    K. A. Ross, J. P. C. Ruff, C. P. Adams, J. S. Gardner, H. A. Dabkowska, Y. Qiu, J. R. D. Copley, and B. D. Gaulin, Phys. Rev. Lett. 103, 227202 (2009), arXiv: 0902.0329.

    ADS  Article  Google Scholar 

  42. 42

    L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell, L. Fu, R. Comin, and J. G. Checkelsky, Nature 555, 638 (2018), arXiv: 1709.10007.

    ADS  Article  Google Scholar 

  43. 43

    Y. Li, Q. Wang, L. DeBeer-Schmitt, Z. Guguchia, R. D. Desautels, J. X. Yin, Q. Du, W. Ren, X. Zhao, Z. Zhang, I. A. Zaliznyak, C. Petrovic, W. Yin, M. Z. Hasan, H. Lei, and J. M. Tranquada, Phys. Rev. Lett. 123, 196604 (2019), arXiv: 1907.04948.

    ADS  Article  Google Scholar 

  44. 44

    N. Kumar, Y. Soh, Y. Wang, and Y. Xiong, Phys. Rev. B 100, 214420 (2019), arXiv: 1908.03927.

    ADS  Article  Google Scholar 

  45. 45

    M. P. Ghimire, J. I. Facio, J. S. You, L. Ye, J. G. Checkelsky, S. Fang, E. Kaxiras, M. Richter, and J. van den Brink, Phys. Rev. Res. 1, 032044(R) (2019).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to YouGuo Shi or EnKe Liu or HuiQian Luo.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303100, 2017YFA0302900, 2016YFA0300500, and 2017YFA0206300), the National Natural Science Foundation of China (Grant Nos. 11974392, 11974394, 11822411, 51722106, 11674372, 11774399, 11961160699, and 12061130200), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant Nos. XDB07020300, XDB25000000, and XDB33000000), and the Beijing Natural Science Foundation (Grant Nos. JQ19002, Z180008, and Z190009). EnKe Liu and HuiQian Luo is grateful for the support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant Nos. 2013002, and 2016004). This work is based on neutron scattering experiments performed at the Swiss Spallation Neutron Source (SINQ), Paul Scherrer Institute, Villigen, Switzerland (Proposal No. 20181447).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yi, C., Wang, X. et al. Anisotropic magnetoelastic response in the magnetic Weyl semimetal Co3Sn2S2. Sci. China Phys. Mech. Astron. 64, 257511 (2021). https://doi.org/10.1007/s11433-020-1655-2

Download citation

Keywords

  • Weyl semimetal
  • magneto-elastic coupling
  • topological materials
  • elastic neutron scattering
  • ferromagnetism