Skip to main content
Log in

Room-temperature giant magnetotranstance effect in single-phase multiferroics

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Single-phase multiferroic materials are usually considered useless because of the weak magnetoelectric effects, low operating temperature, and small electric polarization induced by magnetic orders. As a result, current studies on applications of the magnetoelectric effects are mainly focusing on multiferroic heterostructures and composites. Here we report a room-temperature giant effect in response to external magnetic fields in single-phase multiferroics. A low magnetic field of 1000 Oe applied on the spin-driven multiferroic hexaferrites BaSrCo2Fe11AlO22 and Ba0.9Sr1.1Co2Fe11AlO22 is able to cause a huge change in the linear magnetoelectric coefficient (αE = dE/dH) by several orders, leading to a giant magnetotranstance (GMT) effect at room temperature. The GMT effect is comparable to the well-known giant magnetoresistance (GMR) effect in magnetic multilayers, and thus opens up a door toward practical applications for single-phase multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Shang, Y. S. Chai, Z. X. Cao, J. Lu, and Y. Sun, Chin. Phys. B 24, 068402 (2015), arXiv: 1508.03661.

    Article  ADS  Google Scholar 

  2. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).

    Article  ADS  Google Scholar 

  3. S. Dong, J. M. Liu, S. W. Cheong, and Z. Ren, Adv. Phys. 64, 519 (2015), arXiv: 1512.05372.

    Article  ADS  Google Scholar 

  4. M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, Nat. Rev. Mater. 1, 16046 (2016).

    Article  ADS  Google Scholar 

  5. N. A. Spaldin, and R. Ramesh, Nat. Mater. 18, 203 (2019).

    Article  Google Scholar 

  6. J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotech. 8, 13 (2013).

    Article  ADS  Google Scholar 

  7. M. A. Zidan, J. P. Strachan, and W. D. Lu, Nat. Electron. 1, 22 (2018).

    Article  Google Scholar 

  8. J. Shen, J. Cong, Y. Chai, D. Shang, S. Shen, K. Zhai, Y. Tian, and Y. Sun, Phys. Rev. Appl. 6, 021001 (2016), arXiv: 1605.02505.

    Article  ADS  Google Scholar 

  9. J. Shen, D. Shang, Y. Chai, Y. Wang, J. Cong, S. Shen, L. Yan, W. Wang, and Y. Sun, Phys. Rev. Appl. 6, 064028 (2016), arXiv: 1609.03412.

    Article  ADS  Google Scholar 

  10. J. X. Shen, D. S. Shang, Y. S. Chai, S. G. Wang, B. G. Shen, and Y. Sun, Adv. Mater. 30, 1706717 (2018).

    Article  Google Scholar 

  11. K. Zhai, D. S. Shang, Y. S. Chai, G. Li, J. W. Cai, B. G. Shen, and Y. Sun, Adv. Funct. Mater. 28, 1705771 (2018).

    Article  Google Scholar 

  12. J. Shen, P. Lu, D. Shang, and Y. Sun, Phys. Rev. Appl. 12, 054062 (2019).

    Article  ADS  Google Scholar 

  13. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  14. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

    Article  ADS  Google Scholar 

  15. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  ADS  Google Scholar 

  16. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).

    Article  ADS  Google Scholar 

  17. M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).

    Article  ADS  Google Scholar 

  18. E. Mun, H. Ko, G. J. Miller, G. D. Samolyuk, S. L. Bud’Ko, and P. C. Canfield, Phys. Rev. B 85, 035135 (2012), arXiv: 1201.4091.

    Article  ADS  Google Scholar 

  19. T. Kimura, Annu. Rev. Condens. Matter Phys. 3, 93 (2012).

    Article  Google Scholar 

  20. S. P. Shen, and Y. Sun, Sci. China-Phys. Mech. Astron. 62, 047501 (2019).

    Article  Google Scholar 

  21. S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Science 319, 1643 (2008).

    Article  ADS  Google Scholar 

  22. K. Zhai, Y. Wu, S. Shen, W. Tian, H. Cao, Y. Chai, B. C. Chakoumakos, D. Shang, L. Yan, F. Wang, and Y. Sun, Nat. Commun. 8, 519 (2017).

    Article  ADS  Google Scholar 

  23. V. Kocsis, T. Nakajima, M. Matsuda, A. Kikkawa, Y. Kaneko, J. Takashima, K. Kakurai, T. Arima, F. Kagawa, Y. Tokunaga, Y. Tokura, and Y. Taguchi, Nat. Commun. 10, 1247 (2019), arXiv: 1904.05017.

    Article  ADS  Google Scholar 

  24. S. Shen, X. Liu, Y. Chai, A. J. Studer, C. He, S. Wang, and Y. Sun, Phys. Rev. B 100, 134433 (2019).

    Article  ADS  Google Scholar 

  25. H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005), arXiv: cond-mat/0412319.

    Article  ADS  Google Scholar 

  26. I. A. Sergienko, and E. Dagotto, Phys. Rev. B 73, 094434 (2006), arXiv: cond-mat/0508075.

    Article  ADS  Google Scholar 

  27. Y. Chang, K. Zhai, Y. Chai, D. Shang, and Y. Sun, J. Phys. D-Appl. Phys. 51, 264002 (2018).

    Article  ADS  Google Scholar 

  28. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    Article  ADS  Google Scholar 

  29. Y. Shen, J. Gao, Y. Wang, J. Li, and D. Viehland, J. Appl. Phys. 115, 094102 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sun.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51725104, and 11534015), the National Key Research and Development Program of China (Grant No. 2016YFA0300700), and the Beijing Natural Science Foundation (Grant No. Z180009).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YF., Sun, Y. Room-temperature giant magnetotranstance effect in single-phase multiferroics. Sci. China Phys. Mech. Astron. 64, 237511 (2021). https://doi.org/10.1007/s11433-020-1635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1635-3

Keywords

Navigation