Room-temperature giant magnetotranstance effect in single-phase multiferroics

Abstract

Single-phase multiferroic materials are usually considered useless because of the weak magnetoelectric effects, low operating temperature, and small electric polarization induced by magnetic orders. As a result, current studies on applications of the magnetoelectric effects are mainly focusing on multiferroic heterostructures and composites. Here we report a room-temperature giant effect in response to external magnetic fields in single-phase multiferroics. A low magnetic field of 1000 Oe applied on the spin-driven multiferroic hexaferrites BaSrCo2Fe11AlO22 and Ba0.9Sr1.1Co2Fe11AlO22 is able to cause a huge change in the linear magnetoelectric coefficient (αE = dE/dH) by several orders, leading to a giant magnetotranstance (GMT) effect at room temperature. The GMT effect is comparable to the well-known giant magnetoresistance (GMR) effect in magnetic multilayers, and thus opens up a door toward practical applications for single-phase multiferroics.

This is a preview of subscription content, access via your institution.

References

  1. 1

    D. S. Shang, Y. S. Chai, Z. X. Cao, J. Lu, and Y. Sun, Chin. Phys. B 24, 068402 (2015), arXiv: 1508.03661.

    ADS  Article  Google Scholar 

  2. 2

    W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).

    ADS  Article  Google Scholar 

  3. 3

    S. Dong, J. M. Liu, S. W. Cheong, and Z. Ren, Adv. Phys. 64, 519 (2015), arXiv: 1512.05372.

    ADS  Article  Google Scholar 

  4. 4

    M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, Nat. Rev. Mater. 1, 16046 (2016).

    ADS  Article  Google Scholar 

  5. 5

    N. A. Spaldin, and R. Ramesh, Nat. Mater. 18, 203 (2019).

    Article  Google Scholar 

  6. 6

    J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotech. 8, 13 (2013).

    ADS  Article  Google Scholar 

  7. 7

    M. A. Zidan, J. P. Strachan, and W. D. Lu, Nat. Electron. 1, 22 (2018).

    Article  Google Scholar 

  8. 8

    J. Shen, J. Cong, Y. Chai, D. Shang, S. Shen, K. Zhai, Y. Tian, and Y. Sun, Phys. Rev. Appl. 6, 021001 (2016), arXiv: 1605.02505.

    ADS  Article  Google Scholar 

  9. 9

    J. Shen, D. Shang, Y. Chai, Y. Wang, J. Cong, S. Shen, L. Yan, W. Wang, and Y. Sun, Phys. Rev. Appl. 6, 064028 (2016), arXiv: 1609.03412.

    ADS  Article  Google Scholar 

  10. 10

    J. X. Shen, D. S. Shang, Y. S. Chai, S. G. Wang, B. G. Shen, and Y. Sun, Adv. Mater. 30, 1706717 (2018).

    Article  Google Scholar 

  11. 11

    K. Zhai, D. S. Shang, Y. S. Chai, G. Li, J. W. Cai, B. G. Shen, and Y. Sun, Adv. Funct. Mater. 28, 1705771 (2018).

    Article  Google Scholar 

  12. 12

    J. Shen, P. Lu, D. Shang, and Y. Sun, Phys. Rev. Appl. 12, 054062 (2019).

    ADS  Article  Google Scholar 

  13. 13

    M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    ADS  Article  Google Scholar 

  14. 14

    G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

    ADS  Article  Google Scholar 

  15. 15

    R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    ADS  Article  Google Scholar 

  16. 16

    S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).

    ADS  Article  Google Scholar 

  17. 17

    M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).

    ADS  Article  Google Scholar 

  18. 18

    E. Mun, H. Ko, G. J. Miller, G. D. Samolyuk, S. L. Bud’Ko, and P. C. Canfield, Phys. Rev. B 85, 035135 (2012), arXiv: 1201.4091.

    ADS  Article  Google Scholar 

  19. 19

    T. Kimura, Annu. Rev. Condens. Matter Phys. 3, 93 (2012).

    Article  Google Scholar 

  20. 20

    S. P. Shen, and Y. Sun, Sci. China-Phys. Mech. Astron. 62, 047501 (2019).

    Article  Google Scholar 

  21. 21

    S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, and Y. Tokura, Science 319, 1643 (2008).

    ADS  Article  Google Scholar 

  22. 22

    K. Zhai, Y. Wu, S. Shen, W. Tian, H. Cao, Y. Chai, B. C. Chakoumakos, D. Shang, L. Yan, F. Wang, and Y. Sun, Nat. Commun. 8, 519 (2017).

    ADS  Article  Google Scholar 

  23. 23

    V. Kocsis, T. Nakajima, M. Matsuda, A. Kikkawa, Y. Kaneko, J. Takashima, K. Kakurai, T. Arima, F. Kagawa, Y. Tokunaga, Y. Tokura, and Y. Taguchi, Nat. Commun. 10, 1247 (2019), arXiv: 1904.05017.

    ADS  Article  Google Scholar 

  24. 24

    S. Shen, X. Liu, Y. Chai, A. J. Studer, C. He, S. Wang, and Y. Sun, Phys. Rev. B 100, 134433 (2019).

    ADS  Article  Google Scholar 

  25. 25

    H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005), arXiv: cond-mat/0412319.

    ADS  Article  Google Scholar 

  26. 26

    I. A. Sergienko, and E. Dagotto, Phys. Rev. B 73, 094434 (2006), arXiv: cond-mat/0508075.

    ADS  Article  Google Scholar 

  27. 27

    Y. Chang, K. Zhai, Y. Chai, D. Shang, and Y. Sun, J. Phys. D-Appl. Phys. 51, 264002 (2018).

    ADS  Article  Google Scholar 

  28. 28

    C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Y. Shen, J. Gao, Y. Wang, J. Li, and D. Viehland, J. Appl. Phys. 115, 094102 (2014).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young Sun.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51725104, and 11534015), the National Key Research and Development Program of China (Grant No. 2016YFA0300700), and the Beijing Natural Science Foundation (Grant No. Z180009).

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, YF., Sun, Y. Room-temperature giant magnetotranstance effect in single-phase multiferroics. Sci. China Phys. Mech. Astron. 64, 237511 (2021). https://doi.org/10.1007/s11433-020-1635-3

Download citation

Keywords

  • multiferroic
  • magnetoelectric effect
  • transtor