First-principles study of defect control in thin-film solar cell materials

Abstract

A solar cell is a photovoltaic device that converts solar radiation energy to electrical energy, which plays a leading role in alleviating global energy shortages and decreasing air pollution levels typical of conventional fossil fuels. To render solar cells more efficient, high visible-light absorption rates and excellent carrier transport properties are required to generate high carrier levels and high output voltage. Hence, the core material, i.e., the absorption layer, should have an appropriate direct band gap and be effectively doped by both p- and n-types with minimal carrier traps and recombination centers. Consequently, defect properties of absorbers are critical in determining solar cell efficiency. In this work, we review recent first-principles studies of defect properties and engineering in four representative thin-film solar cells, namely CdTe, Cu(In,Ga)Se2, Cu2ZnSnS4, and halide perovskites. The focal points include basic electronic and defect properties, existing problems, and possible solutions in engineering defect properties of those materials to optimize solar cell efficiency.

References

  1. 1

    A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, Appl. Phys. Lett. 55, 1363 (1989).

    ADS  Article  Google Scholar 

  2. 2

    T. Saga, NPG Asia Mater. 2, 96 (2010).

    Article  Google Scholar 

  3. 3

    J. Oh, H. C. Yuan, and H. M. Branz, Nat. Nanotech. 7, 743 (2012).

    ADS  Article  Google Scholar 

  4. 4

    N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Nature 517, 476 (2015).

    ADS  Article  Google Scholar 

  5. 5

    C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrćek, C. del Cañizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).

    Article  Google Scholar 

  6. 6

    B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin, Nat. Commun. 9, 1076 (2018).

    ADS  Article  Google Scholar 

  7. 7

    K. Durose, P. R. Edwards, and D. P. Halliday, J. Cryst. Growth 197, 733 (1999).

    ADS  Article  Google Scholar 

  8. 8

    D. L. Bätzner, A. Romeo, H. Zogg, R. Wendt, and A. N. Tiwari, Thin Solid Films 387, 151 (2001).

    ADS  Article  Google Scholar 

  9. 9

    U.S. Department of Energy. The History of Solar. https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf.

  10. 10

    W. Shockley, and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).

    ADS  Article  Google Scholar 

  11. 11

    J. Sites, and J. Pan, Thin Solid Films 515, 6099 (2007).

    ADS  Article  Google Scholar 

  12. 12

    S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (Wiley Interscience, Hoboken, 2007).

    Google Scholar 

  13. 13

    J. Ma, S. H. Wei, T. A. Gessert, and K. K. Chin, Phys. Rev. B 83, 245207 (2011).

    ADS  Article  Google Scholar 

  14. 14

    P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964).

    ADS  Article  Google Scholar 

  15. 15

    W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    ADS  Article  Google Scholar 

  16. 16

    Y. Yan, and S. H. Wei, Phys. Stat. Sol. (b) 245, 641 (2008).

    ADS  Article  Google Scholar 

  17. 17

    J. Xiao, K. Yang, D. Guo, T. Shen, H. X. Deng, S. S. Li, J. W. Luo, and S. H. Wei, Phys. Rev. B 101, 165306 (2020), arXiv: 1910.08762.

    ADS  Article  Google Scholar 

  18. 18

    C. G. Van de Walle, and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

    ADS  Article  Google Scholar 

  19. 19

    C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

    ADS  Article  Google Scholar 

  20. 20

    A. Alkauskas, P. Deak, J. Neugebauer, A. Pasquarello, and C. G. Van de Walle. Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors. In: Advanced Calculations for Defects in Materials: Electronic Structure Methods (Wiley-VCH, Hoboken, 2011), 13: 213.

    Google Scholar 

  21. 21

    J. H. Yang, W. K. Metzger, and S. H. Wei, Appl. Phys. Lett. 111, 042106 (2017), arXiv: 1701.06068.

    ADS  Article  Google Scholar 

  22. 22

    National Renewable Energy Laboratory. Best Research-Cell Efficiencies. 2020-06-20. https://www.nrel.gov/pv/assets/images/best-research-cell-efficiencies.png.

  23. 23

    J. H. Yang, J. S. Park, J. Kang, W. Metzger, T. Barnes, and S. H. Wei, Phys. Rev. B 90, 245202 (2014).

    ADS  Article  Google Scholar 

  24. 24

    J. H. Yang, W. J. Yin, J. S. Park, J. Ma, and S. H. Wei, Semicond. Sci. Technol. 31, 083002 (2016).

    ADS  Article  Google Scholar 

  25. 25

    J. H. Yang, J. S. Park, J. Kang, and S. H. Wei, Phys. Rev. B 91, 075202 (2015).

    ADS  Article  Google Scholar 

  26. 26

    D. Krasikov, A. Knizhnik, B. Potapkin, and T. Sommerer, Semicond. Sci. Technol. 28, 125019 (2013).

    ADS  Article  Google Scholar 

  27. 27

    D. Kuciauskas, A. Kanevce, P. Dippo, S. Seyedmohammadi, and R. Malik, IEEE J. Photovolt. 5, 366 (2015).

    Article  Google Scholar 

  28. 28

    Y. Xiao, Z. W. Wang, L. Shi, X. W. Jiang, S. S. Li, and L. W. Wang, Sci. China-Phys. Mech. Astron. 63, 277312 (2020).

    Article  Google Scholar 

  29. 29

    L. Shi, and L. W. Wang, Phys. Rev. Lett. 109, 245501 (2012).

    ADS  Article  Google Scholar 

  30. 30

    L. Shi, K. Xu, and L. W. Wang, Phys. Rev. B 91, 205315 (2015), arXiv: 1502.04559.

    ADS  Article  Google Scholar 

  31. 31

    J. H. Yang, L. Shi, L. W. Wang, and S. H. Wei, Sci. Rep. 6, 21712 (2016).

    ADS  Article  Google Scholar 

  32. 32

    J. Ma, D. Kuciauskas, D. Albin, R. Bhattacharya, M. Reese, T. Barnes, J. V. Li, T. Gessert, and S. H. Wei, Phys. Rev. Lett. 111, 067402 (2013).

    ADS  Article  Google Scholar 

  33. 33

    S. H. Wei, and S. B. Zhang, Phys. Rev. B 66, 155211 (2002).

    ADS  Article  Google Scholar 

  34. 34

    H. X. Deng, J. W. Luo, S. S. Li, and S. H. Wei, Phys. Rev. Lett. 117, 165901 (2016).

    ADS  Article  Google Scholar 

  35. 35

    J. Ma, and S. H. Wei, Phys. Rev. Lett. 110, 235901 (2013).

    ADS  Article  Google Scholar 

  36. 36

    T. C. Anthony, A. L. Fahrenbruch, M. G. Peters, and R. H. Bube, J. Appl. Phys. 57, 400 (1985).

    ADS  Article  Google Scholar 

  37. 37

    M. Zandian, A. C. Chen, D. D. Edwall, J. G. Pasko, and J. M. Arias, Appl. Phys. Lett. 71, 2815 (1997).

    ADS  Article  Google Scholar 

  38. 38

    J. H. Park, S. Farrell, R. Kodama, C. Blissett, X. Wang, E. Colegrove, W. K. Metzger, T. A. Gessert, and S. Sivananthan, J. Electron. Mater. 43, 2998 (2014).

    ADS  Article  Google Scholar 

  39. 39

    J. E. Hails, S. J. C. Irvine, D. J. Cole-Hamilton, J. Giess, M. R. Houlton, and A. Graham, J. Electron. Mater. 37, 1291 (2008).

    ADS  Article  Google Scholar 

  40. 40

    C. Kraft, A. Brömel, S. Schönherr, M. Hädrich, U. Reislöhner, P. Schley, G. Gobsch, R. Goldhahn, W. Wesch, and H. Metzner, Thin Solid Films 519, 7153 (2011).

    ADS  Article  Google Scholar 

  41. 41

    J. H. Yang, S. Chen, H. Xiang, X. G. Gong, and S. H. Wei, Phys. Rev. B 83, 235208 (2011).

    ADS  Article  Google Scholar 

  42. 42

    J. Yang, and S. H. Wei, Chin. Phys. B 28, 086106 (2019).

    ADS  Article  Google Scholar 

  43. 43

    M. A. Contreras, L. M. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, and W. Mannstadt, Prog. Photovolt-Res. Appl. 20, 843 (2012).

    Article  Google Scholar 

  44. 44

    A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F. J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, Prog. Photovolt-Res. Appl. 12, 93 (2004).

    Article  Google Scholar 

  45. 45

    M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas, and R. Noufi, Prog. Photovolt-Res. Appl. 13, 209 (2005).

    Article  Google Scholar 

  46. 46

    P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, IEEE J. Photovolt. 3, 572 (2013).

    Article  Google Scholar 

  47. 47

    M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, IEEE J. Photovolt. 9, 1863 (2019).

    Article  Google Scholar 

  48. 48

    B. Huang, S. Chen, H. X. Deng, L. W. Wang, M. A. Contreras, R. Noufi, and S. H. Wei, IEEE J. Photovolt. 4, 477 (2014).

    Article  Google Scholar 

  49. 49

    R. N. Bhattacharya, W. Batchelor, J. F. Hiltner, and J. R. Sites, Appl. Phys. Lett. 75, 1431 (1999).

    ADS  Article  Google Scholar 

  50. 50

    P. K. Johnson, J. T. Heath, J. D. Cohen, K. Ramanathan, and J. R. Sites, Prog. Photovolt-Res. Appl. 13, 579 (2005).

    Article  Google Scholar 

  51. 51

    R. N. Bhattacharya, J. F. Hiltner, W. Batchelor, M. A. Contreras, R. N. Noufi, and J. R. Sites, Thin Solid Films 361–362, 396 (2000).

    Article  Google Scholar 

  52. 52

    S. H. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Lett. 72, 3199 (1998).

    ADS  Article  Google Scholar 

  53. 53

    S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).

    ADS  Article  Google Scholar 

  54. 54

    S. Lany, and A. Zunger, Phys. Rev. Lett. 100, 016401 (2008).

    ADS  Article  Google Scholar 

  55. 55

    S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Phys. Rev. B 79, 165211 (2009).

    ADS  Article  Google Scholar 

  56. 56

    S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Appl. Phys. Lett. 94, 041903 (2009).

    ADS  Article  Google Scholar 

  57. 57

    S. C. Riha, B. A. Parkinson, and A. L. Prieto, J. Am. Chem. Soc. 131, 12054 (2009).

    Article  Google Scholar 

  58. 58

    A. Weber, S. Schmidt, D. Abou-Ras, P. Schubert-Bischoff, I. Denks, R. Mainz, and H. W. Schock, Appl. Phys. Lett. 95, 041904 (2009).

    ADS  Article  Google Scholar 

  59. 59

    H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Thin Solid Films 517, 2455 (2009).

    ADS  Article  Google Scholar 

  60. 60

    Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Jpn. J. Appl. Phys. 47, 596 (2008).

    ADS  Article  Google Scholar 

  61. 61

    C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, J. Am. Chem. Soc. 131, 12554 (2009).

    Article  Google Scholar 

  62. 62

    S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Appl. Phys. Lett. 96, 021902 (2010).

    ADS  Article  Google Scholar 

  63. 63

    S. Chen, A. Walsh, X. G. Gong, and S. H. Wei, Adv. Mater. 25, 1522 (2013).

    Article  Google Scholar 

  64. 64

    J. M. Raulot, C. Domain, and J. F. Guillemoles, J. Phys. Chem. Solids 66, 2019 (2005).

    ADS  Article  Google Scholar 

  65. 65

    N. Nakayama, and K. Ito, Appl. Surf. Sci. 92, 171 (1996).

    ADS  Article  Google Scholar 

  66. 66

    T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, J. Phys. Chem. Solids 66, 1978 (2005).

    ADS  Article  Google Scholar 

  67. 67

    J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, and D. B. Mitzi, Adv. Mater. 26, 7427 (2014).

    Article  Google Scholar 

  68. 68

    K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009).

    Article  Google Scholar 

  69. 69

    A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H. W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs, Thin Solid Films 517, 2511 (2009).

    ADS  Article  Google Scholar 

  70. 70

    L. Y. Yeh, and K. W. Cheng, Thin Solid Films 558, 289 (2014).

    ADS  Article  Google Scholar 

  71. 71

    T. Sasamura, T. Osaki, T. Kameyama, T. Shibayama, A. Kudo, S. Kuwabata, and T. Torimoto, Chem. Lett. 41, 1009 (2012).

    Article  Google Scholar 

  72. 72

    K. Ito, and T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988).

    ADS  Article  Google Scholar 

  73. 73

    J. Guo, W. H. Zhou, Y. L. Pei, Q. W. Tian, D. X. Kou, Z. J. Zhou, Y. N. Meng, and S. X. Wu, Sol. Energy Mater. Sol. Cells 155, 209 (2016).

    Article  Google Scholar 

  74. 74

    S. Wagner, and P. M. Bridenbaugh, J. Cryst. Growth 39, 151 (1977).

    ADS  Article  Google Scholar 

  75. 75

    Z. K. Yuan, S. Chen, H. Xiang, X. G. Gong, A. Walsh, J. S. Park, I. Repins, and S. H. Wei, Adv. Funct. Mater. 25, 6733 (2015).

    Article  Google Scholar 

  76. 76

    M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).

    ADS  Article  Google Scholar 

  77. 77

    J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).

    ADS  Article  Google Scholar 

  78. 78

    M. D. McGehee, Nat. Mater. 13, 845 (2014).

    ADS  Article  Google Scholar 

  79. 79

    M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).

    ADS  Article  Google Scholar 

  80. 80

    I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, Nature 485, 486 (2012).

    ADS  Article  Google Scholar 

  81. 81

    M. Grätzel, Nat. Mater. 13, 838 (2014).

    ADS  Article  Google Scholar 

  82. 82

    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Article  Google Scholar 

  83. 83

    W. J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).

    Article  Google Scholar 

  84. 84

    W. J. Yin, J. H. Yang, J. Kang, Y. Yan, and S. H. Wei, J. Mater. Chem. A 3, 8926 (2015).

    Article  Google Scholar 

  85. 85

    S. Gholipour, A. M. Ali, J. P. Correa-Baena, S. H. Turren-Cruz, F. Tajabadi, W. Tress, N. Taghavinia, M. Grätzel, A. Abate, F. De Angelis, C. A. Gaggioli, E. Mosconi, A. Hagfeldt, and M. Saliba, Adv. Mater. 29, 1702005 (2017).

    Article  Google Scholar 

  86. 86

    S. H. Wei, and A. Zunger, Phys. Rev. B 55, 13605 (1997).

    ADS  Article  Google Scholar 

  87. 87

    W. J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).

    ADS  Article  Google Scholar 

  88. 88

    A. Walsh, D. J. Payne, R. G. Egdell, and G. W. Watson, Chem. Soc. Rev. 40, 4455 (2011).

    Article  Google Scholar 

  89. 89

    W. Gao, X. Gao, T. A. Abtew, Y. Y. Sun, S. Zhang, and P. Zhang, Phys. Rev. B 93, 085202 (2016).

    ADS  Article  Google Scholar 

  90. 90

    Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, and J. Huang, Appl. Phys. Lett. 105, 163508 (2014).

    ADS  Article  Google Scholar 

  91. 91

    J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13, 1764 (2013).

    ADS  Article  Google Scholar 

  92. 92

    A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, Science 345, 295 (2014).

    ADS  Article  Google Scholar 

  93. 93

    A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, Nano Lett. 14, 3608 (2014).

    ADS  Article  Google Scholar 

  94. 94

    S. A. Kulkarni, T. Baikie, P. P. Boix, N. Yantara, N. Mathews, and S. Mhaisalkar, J. Mater. Chem. A 2, 9221 (2014).

    Article  Google Scholar 

  95. 95

    B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, J. Phys. Chem. Lett. 5, 1628 (2014).

    Article  Google Scholar 

  96. 96

    E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 5, 429 (2014).

    Article  Google Scholar 

  97. 97

    W. J. Yin, Y. Yan, and S. H. Wei, J. Phys. Chem. Lett. 5, 3625 (2014).

    Article  Google Scholar 

  98. 98

    Y. Zhao, and K. Zhu, J. Am. Chem. Soc. 136, 12241 (2014).

    Article  Google Scholar 

  99. 99

    J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan, and S. Yang, Nanoscale 5, 3245 (2013).

    ADS  Article  Google Scholar 

  100. 100

    R. Wang, X. Zhang, J. He, C. Ma, L. Xu, P. Sheng, and F. Huang, J. Alloys Compd. 695, 555 (2017).

    Article  Google Scholar 

  101. 101

    A. L. Abdelhady, M. I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E. H. Sargent, O. F. Mohammed, and O. M. Bakr, J. Phys. Chem. Lett. 7, 295 (2016).

    Article  Google Scholar 

  102. 102

    M. A. Haque, J. Li, A. L. Abdelhady, M. I. Saidaminov, D. Baran, O. M. Bakr, S. Wei, and T. Wu, Adv. Opt. Mater. 7, 1900865 (2019).

    Article  Google Scholar 

  103. 103

    J. L. Li, J. Yang, T. Wu, and S. H. Wei, J. Mater. Chem. C 7, 4230 (2019).

    Article  Google Scholar 

  104. 104

    D. J. Chadi, and K. J. Chang, Phys. Rev. Lett. 61, 873 (1988).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Su-Huai Wei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, HX., Cao, R. & Wei, SH. First-principles study of defect control in thin-film solar cell materials. Sci. China Phys. Mech. Astron. 64, 237301 (2021). https://doi.org/10.1007/s11433-020-1634-4

Download citation

  • first-principles study
  • thin-film solar cells
  • defect engineering
  • energy conversion efficiency