Microscopic evidence for the intra-unit-cell electronic nematicity inside the pseudogap phase in YBa2Cu4O8

Abstract

Understanding the nature of the mysterious pseudogap phenomenon is one of the most important issues associated with cuprate high-Tc superconductors. Here, we report 17O nuclear magnetic resonance (NMR) studies on two planar oxygen sites in stoichiometric cuprate YBa2Cu4O8 to investigate the symmetry breaking inside the pseudogap phase. We observe that the Knight shifts of the two oxygen sites are identical at high temperatures but different below Tnem ∼ 185 K, which is close to the pseudogap temperature T*. Our result provides a microscopic evidence for intra-unit-cell electronic nematicity. The difference in quadrupole resonance frequency between the two oxygen sites is unchanged below Tnem, which suggests that the observed nematicity does not directly stem from the local charge density modulation. Furthermore, a short-range charge density wave (CDW) order is observed below T ≃ 150 K. The additional broadening in the 17O-NMR spectra because of this CDW order is determined to be inequivalent for the two oxygen sites, which is similar to that observed in case of nematicity. These results suggest a possible connection between nematicity, CDW order, and pseudogap.

This is a preview of subscription content, access via your institution.

References

  1. 1

    E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Annu. Rev. Condens. Matter Phys. 1, 153 (2010), arXiv: 0910.4166.

    ADS  Article  Google Scholar 

  2. 2

    B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).

    ADS  Article  Google Scholar 

  3. 3

    M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C. K. Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and E. A. Kim, Nature 466, 347 (2010), arXiv: 1007.3216.

    ADS  Article  Google Scholar 

  4. 4

    A. Mesaros, K. Fujita, H. Eisaki, S. Uchida, J. C. Davis, S. Sachdev, J. Zaanen, M. J. Lawler, and E. A. Kim, Science 333, 426 (2011), arXiv: 1108.0487.

    ADS  Article  Google Scholar 

  5. 5

    J. Wu, A. T. Bollinger, X. He, and I. Božović, Nature 547, 432 (2017).

    Article  Google Scholar 

  6. 6

    N. Auvray, B. Loret, S. Benhabib, M. Cazayous, R. D. Zhong, J. Schneeloch, G. D. Gu, A. Forget, D. Colson, I. Paul, A. Sacuto, and Y. Gallais, Nat. Commun. 10, 5209 (2019), arXiv: 1902.03508.

    ADS  Article  Google Scholar 

  7. 7

    Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science 315, 1380 (2007), arXiv: cond-mat/0703309.

    ADS  Article  Google Scholar 

  8. 8

    V. Hinkov, D. Haug, B. Fauque, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008).

    Article  Google Scholar 

  9. 9

    R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choiniére, F. Laliberté, N. Doiron-Leyraud, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 463, 519 (2010), arXiv: 0909.4430.

    ADS  Article  Google Scholar 

  10. 10

    Y. Sato, S. Kasahara, H. Murayama, Y. Kasahara, E. G. Moon, T. Nishizaki, T. Loew, J. Porras, B. Keimer, T. Shibauchi, and Y. Matsuda, Nat. Phys. 13, 1074 (2017), arXiv: 1706.05214.

    Article  Google Scholar 

  11. 11

    A. Shekhter, B. J. Ramshaw, R. Liang, W. N. Hardy, D. A. Bonn, F. F. Balakirev, R. D. McDonald, J. B. Betts, S. C. Riggs, and A. Migliori, Nature 498, 75 (2013), arXiv: 1208.5810.

    ADS  Article  Google Scholar 

  12. 12

    S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 531, 210 (2016), arXiv: 1511.08162.

    ADS  Article  Google Scholar 

  13. 13

    S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Proc. Natl. Acad. Sci. USA 114, 4905 (2017), arXiv: 1612.01542.

    ADS  Article  Google Scholar 

  14. 14

    H. Y. Kee, and D. Podolsky, Europhys. Lett. 86, 57005 (2009), arXiv: 0903.3993.

    ADS  Article  Google Scholar 

  15. 15

    T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M. H. Julien, Nature 477, 191 (2011), arXiv: 1109.2011.

    ADS  Article  Google Scholar 

  16. 16

    G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G. Hawthorn, F. He, T. Loew, M. M. Sala, D. C. Peets, M. Salluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer, and L. Braicovich, Science 337, 821 (2012), arXiv: 1207.0915.

    ADS  Article  Google Scholar 

  17. 17

    S. Gerber, H. Jang, H. Nojiri, S. Matsuzawa, H. Yasumura, D. A. Bonn, R. Liang, W. N. Hardy, Z. Islam, A. Mehta, S. Song, M. Sikorski, D. Stefanescu, Y. Feng, S. A. Kivelson, T. P. Devereaux, Z. X. Shen, C. C. Kao, W. S. Lee, D. Zhu, and J. S. Lee, Science 350, 949 (2015).

    Article  Google Scholar 

  18. 18

    J. Chang, E. Blackburn, O. Ivashko, A. T. Holmes, N. B. Christensen, M. Hücker, R. Liang, D. A. Bonn, W. N. Hardy, U. Rütt, M. Zimmermann, E. M. Forgan, and S. M. Hayden, Nat. Commun. 7, 11494 (2016), arXiv: 1511.06092.

    ADS  Article  Google Scholar 

  19. 19

    M. Fu, D. A. Torchetti, T. Imai, F. L. Ning, J. Q. Yan, and A. S. Sefat, Phys. Rev. Lett. 109, 247001 (2012), arXiv: 1208.5652.

    ADS  Article  Google Scholar 

  20. 20

    S. H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and B. Büchner, Nat. Mater. 14, 210 (2015), arXiv: 1408.1875.

    ADS  Article  Google Scholar 

  21. 21

    R. Zhou, L. Y. Xing, X. C. Wang, C. Q. Jin, and G. Q. Zheng, Phys. Rev. B 93, 060502 (2016), arXiv: 1601.05293.

    ADS  Article  Google Scholar 

  22. 22

    T. Iye, M. H. Julien, H. Mayaffre, M. Horvatić, C. Berthier, K. Ishida, H. Ikeda, S. Kasahara, T. Shibauchi, and Y. Matsuda, J. Phys. Soc. Jpn. 84, 043705 (2015), arXiv: 1503.02829.

    ADS  Article  Google Scholar 

  23. 23

    A. P. Dioguardi, T. Kissikov, C. H. Lin, K. R. Shirer, M. M. Lawson, H. J. Grafe, J. H. Chu, I. R. Fisher, R. M. Fernandes, and N. J. Curro, Phys. Rev. Lett. 116, 107202 (2016), arXiv: 1510.01001.

    ADS  Article  Google Scholar 

  24. 24

    T. Wu, R. Zhou, M. Hirata, I. Vinograd, H. Mayaffre, R. Liang, W. N. Hardy, D. A. Bonn, T. Loew, J. Porras, D. Haug, C. T. Lin, V. Hinkov, B. Keimer, and M. H. Julien, Phys. Rev. B 93, 134518 (2016), arXiv: 1604.03436.

    ADS  Article  Google Scholar 

  25. 25

    Y. Kodama, Y. Yamada, N. Murayama, M. Awano, and T. Matsumoto, Advances in Superconductivity III, in Proceedings of the 3rd International Symposium on Superconductivity (ISS’ 90), November 6–9, Sendai, 1990. pp. 399–402

  26. 26

    G. Q. Zheng, Y. Kitaoka, K. Asayama, Y. Kodama, and Y. Yamada, Phys. C-Supercond. Appl. 193, 154 (1992).

    ADS  Article  Google Scholar 

  27. 27

    R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 73, 180505 (2006), arXiv: cond-mat/0510674.

    ADS  Article  Google Scholar 

  28. 28

    I. Vinograd, Nuclear Magnetic Resonance Studies of Competing Orders in Cuprate Superconductors, Dissertation for the Doctoral Degree, (Université Grenoble Alpes, Grenoble, 2018).

    Google Scholar 

  29. 29

    I. Tomeno, T. Machi, K. Tai, N. Koshizuka, S. Kambe, A. Hayashi, Y. Ueda, and H. Yasuoka, Phys. Rev. B 49, 15327 (1994).

    ADS  Article  Google Scholar 

  30. 30

    G. Q. Zheng, W. G. Clark, Y. Kitaoka, K. Asayama, Y. Kodama, P. Kuhns, and W. G. Moulton, Phys. Rev. B 60, R9947 (1999).

    ADS  Article  Google Scholar 

  31. 31

    M. Bankay, M. Mali, J. Roos, and D. Brinkmann, Phys. Rev. B 50, 6416 (1994).

    ADS  Article  Google Scholar 

  32. 32

    N. E. Hussey, K. Nozawa, H. Takagi, S. Adachi, and K. Tanabe, Phys. Rev. B 56, R11423 (1997).

    ADS  Article  Google Scholar 

  33. 33

    O. V. Alexandrov, M. François, T. Graf, and K. Yvon, Phys. C-Supercond. 170, 56 (1990).

    ADS  Article  Google Scholar 

  34. 34

    S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998), arXiv: cond-mat/9707327.

    ADS  Article  Google Scholar 

  35. 35

    I. Mangelschots, M. Mali, J. Roos, D. Brinkmann, S. Rusiecki, J. Karpinski, and E. Kaldis, Phys. C-Supercond. 194, 277 (1992).

    ADS  Article  Google Scholar 

  36. 36

    T. Machi, N. Koshizuka, and H. Yasuoka, A NMR study of vortex melting in YBa2Qu4O8, in Proceedings of the 11th International Symposium on Superconductivity, November 16–19, Fukuoka, 1998. pp. 227–230.

  37. 37

    S. Kawasaki, Y. Tani, T. Mabuchi, K. Kudo, Y. Nishikubo, D. Mitsuoka, M. Nohara, and G. Q. Zheng, Phys. Rev. B 91, 060510 (2015), arXiv: 1503.00512.

    ADS  Article  Google Scholar 

  38. 38

    T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, P. L. Kuhns, A. P. Reyes, R. Liang, W. N. Hardy, D. A. Bonn, and M. H. Julien, Nat. Commun. 4, 2113 (2013), arXiv: 1307.2049.

    ADS  Article  Google Scholar 

  39. 39

    S. Kawasaki, Z. Li, M. Kitahashi, C. T. Lin, P. L. Kuhns, A. P. Reyes, and G. Q. Zheng, Nat. Commun. 8, 1267 (2017), arXiv: 1704.06169.

    ADS  Article  Google Scholar 

  40. 40

    Z. Li, W. H. Jiao, G. H. Cao, and G. Q. Zheng, Phys. Rev. B 94, 174511 (2016), arXiv: 1610.01811.

    ADS  Article  Google Scholar 

  41. 41

    T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M. H. Julien, Nat. Commun. 6, 6438 (2015), arXiv: 1404.1617.

    ADS  Article  Google Scholar 

  42. 42

    M. Hücker, N. B. Christensen, A. T. Holmes, E. Blackburn, E. M. Forgan, R. Liang, D. A. Bonn, W. N. Hardy, O. Gutowski, M. Zimmermann, S. M. Hayden, and J. Chang, Phys. Rev. B 90, 054514 (2014), arXiv: 1405.7001.

    ADS  Article  Google Scholar 

  43. 43

    S. Blanco-Canosa, A. Frano, E. Schierle, J. Porras, T. Loew, M. Minola, M. Bluschke, E. Weschke, B. Keimer, and M. Le Tacon, Phys. Rev. B 90, 054513 (2014), arXiv: 1406.1595.

    ADS  Article  Google Scholar 

  44. 44

    E. A. Yelland, J. Singleton, C. H. Mielke, N. Harrison, F. F. Balakirev, B. Dabrowski, and J. R. Cooper, Phys. Rev. Lett. 100, 047003 (2008), arXiv: 0707.0057.

    ADS  Article  Google Scholar 

  45. 45

    B. S. Tan, N. Harrison, Z. Zhu, F. Balakirev, B. J. Ramshaw, A. Srivastava, S. A. Sabok-Sayr, B. Dabrowski, G. G. Lonzarich, and S. E. Sebastian, Proc. Natl. Acad. Sci. USA 112, 9568 (2015), arXiv: 1507.06109.

    ADS  Article  Google Scholar 

  46. 46

    L. Nie, G. Tarjus, and S. A. Kivelson, Proc. Natl. Acad. Sci. USA 111, 7980 (2014), arXiv: 1311.5580.

    ADS  Article  Google Scholar 

  47. 47

    M. Tsuchiizu, K. Kawaguchi, Y. Yamakawa, and H. Kontani, Phys. Rev. B 97, 165131 (2018), arXiv: 1705.05356.

    ADS  Article  Google Scholar 

  48. 48

    S. Lee, J. Jung, A. Go, and E.-G. Moon, arXiv: 1803.00578v1.

  49. 49

    P. P. Orth, B. Jeevanesan, R. M. Fernandes, and J. Schmalian, npj Quantum. Mater. 4, 4 (2019), arXiv: 1703.02210.

    ADS  Article  Google Scholar 

  50. 50

    A. Shekhter, and C. M. Varma, Phys. Rev. B 80, 214501 (2009), arXiv: 0905.1987.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rui Zhou.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974405, 11674377, and 11634015), the Ministry of Science and Technology of China (Grant Nos. 2016YFA0300502, and 2017YFA0302904), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100).

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Luo, J., Wang, C. et al. Microscopic evidence for the intra-unit-cell electronic nematicity inside the pseudogap phase in YBa2Cu4O8. Sci. China Phys. Mech. Astron. 64, 237413 (2021). https://doi.org/10.1007/s11433-020-1615-y

Download citation

Keywords

  • high-temperature superconductors
  • nuclear magnetic resonance
  • nematic order
  • pseudogap