Investigation of point-contact Andreev reflection on magnetic Weyl semimetal Co3Sn2S2

Abstract

Magnetic Weyl semimetals (WSMs) with broken time-reversal symmetry (TRS) hosting topological band structures are expected to provide an ideal platform for investigating topological superconductivity and spintronics. However, the experimental verification of magnetic WSMs is very challenging. Very recently, the kagome magnet Co3Sn2S2 was confirmed to be a magnetic WSM by both angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy and consequently has become the focus of great attention. This paper reports a point-contact Andreev-reflection spectroscopy (PCARS) investigation on the (001) surface and the side surface of the Co3Sn2S2 single crystals, respectively. The measurements from the sample's (001) and side surfaces provide experimental evidence for transport spin polarization in the Co3Sn2S2 magnetic WSM. Furthermore, the superconducting proximity effect in the Co3Sn2S2 single crystal is successfully detected. The point-contact spectra (PCS) along the in-plane direction cannot be well fitted by theoretical models based on s-wave pairing, indicating that possible triplet p-wave superconductivity may be triggered at the interface, which paves the way for the future exploration of the topological superconductivity and Majorana states in broken TRS WSMs.

References

  1. 1

    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011), arXiv: 1007.0016.

    ADS  Google Scholar 

  2. 2

    G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011), arXiv: 1106.3125.

    ADS  Google Scholar 

  3. 3

    Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Phys. Rev. Lett. 117, 236401 (2016), arXiv: 1603.00479.

    ADS  Google Scholar 

  4. 4

    N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018), arXiv: 1705.01111.

    ADS  Google Scholar 

  5. 5

    H. M. Weng, Sci. China-Phys. Mech. Astron. 62, 127031 (2019).

    ADS  Google Scholar 

  6. 6

    Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T. Sakakibara, Nature 463, 210 (2010).

    ADS  Google Scholar 

  7. 7

    E. Y. Ma, Y. T. Cui, K. Ueda, S. Tang, K. Chen, N. Tamura, P. M. Wu, J. Fujioka, Y. Tokura, and Z. X. Shen, Science 350, 538 (2015).

    ADS  Google Scholar 

  8. 8

    T. Kondo, M. Nakayama, R. Chen, J. J. Ishikawa, E. G. Moon, T. Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima, Y. Ishida, R. Yoshida, H. Yamamoto, M. Matsunami, S. Kimura, N. Inami, K. Ono, H. Kumigashira, S. Nakatsuji, L. Balents, and S. Shin, Nat. Commun. 6, 10042 (2015), arXiv: 1510.07977.

    ADS  Google Scholar 

  9. 9

    G. Y. Cho, J. H. Bardarson, Y. M. Lu, and J. E. Moore, Phys. Rev. B 86, 214514 (2012), arXiv: 1209.2235.

    ADS  Google Scholar 

  10. 10

    H. Wei, S. P. Chao, and V. Aji, Phys. Rev. B 89, 014506 (2014), arXiv: 1305.7233.

    ADS  Google Scholar 

  11. 11

    G. Bednik, A. A. Zyuzin, and A. A. Burkov, Phys. Rev. B 92, 035153 (2015), arXiv: 1506.05109.

    ADS  Google Scholar 

  12. 12

    T. Zhou, Y. Gao, and Z. D. Wang, Phys. Rev. B 93, 094517 (2016), arXiv: 1510.01051.

    ADS  Google Scholar 

  13. 13

    C. Chan, and X. J. Liu, Phys. Rev. Lett. 118, 207002 (2017), arXiv: 1611.08516.

    ADS  Google Scholar 

  14. 14

    Z. Faraei, and S. A. Jafari, Phys. Rev. B 100, 035447 (2019), arXiv: 1901.11209.

    ADS  Google Scholar 

  15. 15

    E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018), arXiv: 1712.06722.

    Google Scholar 

  16. 16

    J. X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin, Z. Guguchia, B. Lian, H. Zhou, K. Jiang, I. Belopolski, N. Shumiya, D. Multer, M. Litskevich, T. A. Cochran, H. Lin, Z. Wang, T. Neupert, S. Jia, H. Lei, and M. Z. Hasan, Nat. Phys. 15, 443 (2019), arXiv: 1901.04822.

    Google Scholar 

  17. 17

    Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser, and Y. Sun, Phys. Rev. B 97, 235416 (2018), arXiv: 1801.00136.

    ADS  Google Scholar 

  18. 18

    G. Li, Q. Xu, W. Shi, C. Fu, L. Jiao, M. E. Kamminga, M. Yu, H. Tüysüz, N. Kumar, V. Süß, R. Saha, A. K. Srivastava, S. Wirth, G. Auffermann, J. Gooth, S. Parkin, Y. Sun, E. Liu, and C. Felser, Sci. Adv. 5, eaaw9867 (2019), arXiv: 1908.08567.

    ADS  Google Scholar 

  19. 19

    Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681 (2018), arXiv: 1712.09947.

    ADS  Google Scholar 

  20. 20

    D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen, Science 365, 1282 (2019), arXiv: 1909.09580.

    ADS  Google Scholar 

  21. 21

    N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Science 365, 1286 (2019), arXiv: 1903.00509.

    ADS  Google Scholar 

  22. 22

    M. Holder, Y. S. Dedkov, A. Kade, H. Rosner, W. Schnelle, A. Leithe-Jasper, R. Weihrich, and S. L. Molodtsov, Phys. Rev. B 79, 205116 (2019).

    ADS  Google Scholar 

  23. 23

    D. Daghero, and R. S. Gonnelli, Supercond. Sci. Technol. 23, 043001 (2010), arXiv: 0912.4858.

    ADS  Google Scholar 

  24. 24

    R. J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).

    ADS  Google Scholar 

  25. 25

    G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    ADS  Google Scholar 

  26. 26

    H. Wang, L. Ma, and J. Wang, Sci. Bull. 63, 1141 (2018).

    Google Scholar 

  27. 27

    G. T. Woods, R. J. Soulen Jr., I. Mazin, B. Nadgorny, M. S. Osofsky, J. Sanders, H. Srikanth, W. F. Egelhoff, and R. Datla, Phys. Rev. B 70, 054416 (2004), arXiv: cond-mat/0307693.

    ADS  Google Scholar 

  28. 28

    P. Raychaudhuri, A. P. MacKenzie, J. W. Reiner, and M. R. Beasley, Phys. Rev. B 67, 020411 (2003), arXiv: cond-mat/0208044.

    ADS  Google Scholar 

  29. 29

    P. Townsend, and J. Sutton, Phys. Rev. 128, 591 (1962).

    ADS  Google Scholar 

  30. 30

    R. S. Gonnelli, A. Calzolari, D. Daghero, G. A. Ummarino, V. A. Stepanov, P. Fino, G. Giunchi, S. Ceresara, and G. Ripamonti, J. Phys. Chem. Solids 63, 2319 (2002).

    ADS  Google Scholar 

  31. 31

    H. Wang, W. Lou, J. Luo, J. Wei, Y. Liu, J. E. Ortmann, and Z. Q. Mao, Phys. Rev. B 91, 184514 (2015), arXiv: 1501.00798.

    ADS  Google Scholar 

  32. 32

    H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X. J. Liu, X. C. Xie, J. Wei, and J. Wang, Nat. Mater. 15, 38 (2016), arXiv: 1501.00418.

    ADS  Google Scholar 

  33. 33

    H. Wang, H. Wang, Y. Chen, J. Luo, Z. Yuan, J. Liu, Y. Wang, S. Jia, X. J. Liu, J. Wei, and J. Wang, Sci. Bull. 62, 425 (2017).

    Google Scholar 

  34. 34

    Y. Xing, H. Wang, C. K. Li, X. Zhang, J. Liu, Y. Zhang, J. Luo, Z. Wang, Y. Wang, L. Ling, M. Tian, S. Jia, J. Feng, X. J. Liu, J. Wei, and J. Wang, npj Quant. Mater. 1, 16005 (2016).

    Google Scholar 

  35. 35

    H. Wang, Y. He, Y. Liu, Z. Yuan, S. Jia, L. Ma, X. J. Liu, and J. Wang, Sci. Bull. 65, 21 (2020).

    Google Scholar 

  36. 36

    C. W. Hicks, D. O. Brodsky, E. A. Yelland, A. S. Gibbs, J. A. N. Bruin, M. E. Barber, S. D. Edkins, K. Nishimura, S. Yonezawa, Y. Maeno, and A. P. Mackenzie, Science 344, 283 (2014).

    ADS  Google Scholar 

  37. 37

    S. Kittaka, H. Taniguchi, S. Yonezawa, H. Yaguchi, and Y. Maeno, Phys. Rev. B 81, 180510 (2010), arXiv: 1004.3705.

    ADS  Google Scholar 

  38. 38

    R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G. Xiao, and A. Gupta, Nature 439, 825 (2006), arXiv: cond-mat/0602359.

    ADS  Google Scholar 

  39. 39

    D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J. P. Brison, E. Lhotel, and C. Paulsen, Nature 413, 613 (2001).

    ADS  Google Scholar 

  40. 40

    S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature 406, 587 (2000).

    ADS  Google Scholar 

  41. 41

    V. N. Krivoruchko, and V. Y. Tarenkov, Phys. Rev. B 78, 054522 (2008).

    ADS  Google Scholar 

  42. 42

    A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005), arXiv: cond-mat/0505583.

    ADS  Google Scholar 

  43. 43

    J. Wang, J. X. Tang, Z. Q. Wang, Y. Sun, Q. F. Sun, and M. H. W. Chan, Sci. China-Phys. Mech. Astron. 61, 087411 (2018), arXiv: 1803.07863.

    ADS  Google Scholar 

  44. 44

    J. Wang, C. Shi, M. Tian, Q. Zhang, N. Kumar, J. K. Jain, T. E. Mallouk, and M. H. W. Chan, Phys. Rev. Lett. 102, 247003 (2009), arXiv: 0903.2451.

    ADS  Google Scholar 

  45. 45

    J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J. K. Jain, N. Samarth, T. E. Mallouk, and M. H. W. Chan, Nat. Phys. 6, 389 (2010).

    Google Scholar 

  46. 46

    G. J. Strijkers, Y. Ji, F. Y. Yang, C. L. Chien, and J. M. Byers, Phys. Rev. B 63, 104510 (2001).

    ADS  Google Scholar 

  47. 47

    F. Laube, G. Goll, H. Löhneysen, M. Fogelström, and F. Lichtenberg, Phys. Rev. Lett. 84, 1595 (2000), arXiv: cond-mat/9907267.

    ADS  Google Scholar 

  48. 48

    G. Goll, C. Bruder, and H. Löhneysen, Phys. Rev. B 52, 6801 (1995).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFA0305600, and 2017YFA0303302), the National Natural Science Foundation of China (Grant Nos. 11888101, 11774008, 11774007, U1832214, and 11704279), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), and the Beijing Natural Science Foundation (Grant Nos. Z180010, and 1202005). The authors thank Ying Xing for the help with the experiments.

Supplementary file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, Y., Zhou, H. et al. Investigation of point-contact Andreev reflection on magnetic Weyl semimetal Co3Sn2S2. Sci. China Phys. Mech. Astron. 63, 287411 (2020). https://doi.org/10.1007/s11433-020-1565-6

Download citation

Keywords

  • magnetic Weyl semimetal
  • point contact
  • pairing symmetry
  • superconducting proximity effect