Twist-teleportation-based local discrimination of maximally entangled states

Abstract

In this work, we study the local distinguishability of maximally entangled states (MESs). In particular, we are concerned with whether any fixed number of MESs can be locally distinguishable for sufficiently large dimensions. Fan and Tian et al. have already obtained two satisfactory results for the generalized Bell states (GBSs) and the qudit lattice states when applied to prime or prime power dimensions. We construct a general twist-teleportation scheme for any orthonormal basis with MESs that is inspired by the method used in [Phys. Rev. A 70, 022304 (2004)]. Using this teleportation scheme, we obtain a sufficient and necessary condition for one-way distinguishable sets of MESs, which include the GBSs and the qudit lattice states as special cases. Moreover, we present a generalized version of the results in [Phys. Rev. A 92, 042320 (2015)] for the arbitrary dimensional case.

This is a preview of subscription content, log in to check access.

References

  1. 1

    C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 59, 1070 (1999), arXiv: quant-ph/9804053.

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    J. Walgate, and L. Hardy, Phys. Rev. Lett. 89, 147901 (2002), arXiv:quant-ph/0202034.

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, IEEE Trans. Inform. Theor. 48, 580 (2002).

    Article  Google Scholar 

  4. 4

    R. Rahaman, and M. G. Parker, Phys. Rev. A 91, 022330 (2015), arXiv: 1403.1097.

    ADS  Article  Google Scholar 

  5. 5

    C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385 (1999), arXiv: quantph/9808030.

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    M. Horodecki, A. Sen(De), U. Sen, and K. Horodecki, Phys. Rev. Lett. 90, 047902 (2003), arXiv: quant-ph/0204116.

    ADS  Article  Google Scholar 

  7. 7

    D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Commun. Math. Phys. 238, 379 (2003), arXiv: quant-ph/9908070.

    ADS  Article  Google Scholar 

  8. 8

    S. De Rinaldis, Phys. Rev. A 70, 022309 (2004), arXiv: quantph/0304027.

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    Y. Feng, and Y. Shi, IEEE Trans. Inform. Theor. 55, 2799 (2009).

    Article  Google Scholar 

  10. 10

    Y. H. Yang, F. Gao, G. J. Tian, T. Q. Cao, and Q. Y. Wen, Phys. Rev. A 88, 024301 (2013).

    ADS  Article  Google Scholar 

  11. 11

    Z. C. Zhang, F. Gao, G. J. Tian, T. Q. Cao, and Q. Y. Wen, Phys. Rev. A 90, 022313 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Z. C. Zhang, F. Gao, S. J. Qin, Y. H. Yang, and Q. Y. Wen, Phys. Rev. A 92, 012332 (2015).

    ADS  Article  Google Scholar 

  13. 13

    Y. L. Wang, M. S. Li, Z. J. Zheng, and S. M. Fei, Phys. Rev. A 92, 032313 (2015), arXiv: 1509.06927.

    ADS  Article  Google Scholar 

  14. 14

    Z. C. Zhang, F. Gao, Y. Cao, S. J. Qin, and Q. Y. Wen, Phys. Rev. A 93, 012314 (2016), arXiv: 1509.01814.

    ADS  MathSciNet  Article  Google Scholar 

  15. 15

    G. B. Xu, Q. Y. Wen, S. J. Qin, Y. H. Yang, and F. Gao, Phys. Rev. A 93, 032341 (2016).

    ADS  Article  Google Scholar 

  16. 16

    Z. C. Zhang, K. J. Zhang, F. Gao, Q. Y. Wen, and C. H. Oh, Phys. Rev. A 95, 052344 (2017).

    ADS  Article  Google Scholar 

  17. 17

    S. Halder, Phys. Rev. A 98, 022303 (2018).

    ADS  Article  Google Scholar 

  18. 18

    J. Walgate, A. J. Short, L. Hardy, and V. Vedral, Phys. Rev. Lett. 85, 4972 (2000), arXiv: quant-ph/0007098.

    ADS  Article  Google Scholar 

  19. 19

    S. Ghosh, G. Kar, A. Roy, A. Sen(De), and U. Sen, Phys. Rev. Lett. 87, 277902 (2001), arXiv: quant-ph/0106148.

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    S. Ghosh, G. Kar, A. Roy, and D. Sarkar, Phys. Rev. A 70, 022304 (2004), arXiv: quant-ph/0205105.

    ADS  MathSciNet  Article  Google Scholar 

  21. 21

    N. Yu, R. Duan, and M. Ying, Phys. Rev. Lett. 109, 020506 (2012), arXiv: 1107.3224.

    ADS  Article  Google Scholar 

  22. 22

    A. Cosentino, Phys. Rev. A 87, 012321 (2013), arXiv: 1205.1031.

    ADS  Article  Google Scholar 

  23. 23

    A. Cosentino, and V. Russo, Quantum Inform. Comput. 14, 1098 (2014).

    Google Scholar 

  24. 24

    M. S. Li, Y. L. Wang, S. M. Fei, and Z. J. Zheng, Phys. Rev. A 91, 042318 (2015), arXiv: 1411.6702.

    ADS  Article  Google Scholar 

  25. 25

    S. X. Yu, and C. H. Oh, arXiv: 1502.01274v1.

  26. 26

    S. Bandyopadhyay, and M. Nathanson, Phys. Rev. A 88, 052313 (2013), arXiv: 1306.2712.

    ADS  Article  Google Scholar 

  27. 27

    N. Yu, R. Duan, and M. Ying, IEEE Trans. Inform. Theor. 60, 2069 (2014).

    Article  Google Scholar 

  28. 28

    S. Bandyopadhyay, A. Cosentino, N. Johnston, V. Russo, J. Watrous, and N. Yu, IEEE Trans. Inform. Theor. 61, 3593 (2015).

    Article  Google Scholar 

  29. 29

    S. Bandyopadhyay, S. Ghosh, and G. Kar, New J. Phys. 13, 123013 (2011), arXiv: 1102.0841.

    ADS  Article  Google Scholar 

  30. 30

    M. Nathanson, Phys. Rev. A 88, 062316 (2013).

    ADS  Article  Google Scholar 

  31. 31

    Z. C. Zhang, Q. Y. Wen, F. Gao, G. J. Tian, and T. Q. Cao, Quantum Inf. Process. 13, 795 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32

    Z. C. Zhang, K. Q. Feng, F. Gao, and Q. Y. Wen, Phys. Rev. A 91, 012329 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33

    G. Tian, S. Yu, F. Gao, Q. Wen, and C. H. Oh, Phys. Rev. A 91, 052314 (2015).

    ADS  Article  Google Scholar 

  34. 34

    Y. H. Yang, J. T. Yuan, C. H. Wang, S. J. Geng, and H. J. Zuo, Phys. Rev. A 98, 042333 (2018).

    ADS  Article  Google Scholar 

  35. 35

    Y. L. Wang, M. S. Li, and Z. X. Xiong, Phys. Rev. A 99, 022307 (2019).

    ADS  Article  Google Scholar 

  36. 36

    Z. X. Xiong, M. S. Li, Z. J. Zheng, C. J. Zhu, and S. M. Fei, Phys. Rev. A 99, 032346 (2019), arXiv: 1810.04460.

    ADS  Article  Google Scholar 

  37. 37

    H. Fan, Phys. Rev. Lett. 92, 177905 (2004), arXiv: quant-ph/0311026.

    ADS  Article  Google Scholar 

  38. 38

    M. Nathanson, J. Math. Phys. 46, 062103 (2005), arXiv: quantph/0411110.

    ADS  MathSciNet  Article  Google Scholar 

  39. 39

    G. Tian, S. Yu, F. Gao, Q. Wen, and C. H. Oh, Phys. Rev. A 92, 042320 (2015).

    ADS  Article  Google Scholar 

  40. 40

    G. Tian, S. Yu, F. Gao, and Q. Wen, Phys. Rev. A 94, 052315 (2016).

    ADS  Article  Google Scholar 

  41. 41

    T. Singal, R. Rahaman, S. Ghosh, and G. Kar, Phys. Rev. A 96, 042314 (2017).

    ADS  Article  Google Scholar 

  42. 42

    Y. L. Wang, M. S. Li, S. M. Fei, and Z. J. Zheng, Quantum Inf. Process. 16, 126 (2017), arXiv: 1703.08773.

    ADS  Article  Google Scholar 

  43. 43

    M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  44. 44

    R. F. Werner, J. Phys. A: Math. Gen. 34, 7081 (2001).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shao-Ming Fei or Yan-Ling Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Fei, S., Xiong, Z. et al. Twist-teleportation-based local discrimination of maximally entangled states. Sci. China Phys. Mech. Astron. 63, 280312 (2020). https://doi.org/10.1007/s11433-020-1562-4

Download citation

Keywords

  • teleportation
  • local discrimination
  • maximally entangled states