Impact of Ta/Ti electrodes on linearities of TaOx-based resistive random-access memories for neuromorphic computing


In this work, by incorporating different electrodes (Ta/Ti) onto TaOx dielectric layer, we studied both the conductance reading and conductance updating (long term potentiation and depression) linearities in the two RRAM devices. Owing to the composition modulation (CM) mechanism, the Ta-electrode device shows better conductance reading and updating linearities. The RRAM device linearities directly influence the performance of the neural network when the devices are used as synapses. System evaluation of a two-layer neural network considering the conductance reading and updating linearity factors further confirm that both the training and inference accuracies of Ta electrode device are better than those of the Ti electrode one. We believe that this work could serve as a powerful reference for engineering synaptic devices with good linearity for neuromorphic computing applications.

This is a preview of subscription content, log in to check access.


  1. 1

    H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, Proc. IEEE 100, 1951 (2012).

    Article  Google Scholar 

  2. 2

    X. Zhao, X. Zhang, D. Shang, Z. Wu, X. Xiao, R. Chen, C. Tang, J. Liu, W. Li, H. Lv, C. Jiang, Q. Liu, and M. Liu, IEEE Electron Device Lett. 40, 554 (2019).

    ADS  Article  Google Scholar 

  3. 3

    W. Wang, Z. H. Wu, T. Shi, Y. Z. Wang, S. Liu, R. R. Cao, H. Xu, Q. Liu, and Q. J. Li, Sci. China-Phys. Mech. Astron. 62, 127821 (2019).

    ADS  Article  Google Scholar 

  4. 4

    V. Ravichandran, C. Li, A. Banagozar, J. J. Yang, and Q. Xia, Sci. China Inf. Sci. 61, 060423 (2018).

    Article  Google Scholar 

  5. 5

    N. K. Upadhyay, S. Joshi, and J. J. Yang, Sci. China Inf. Sci. 59, 061404 (2016).

    Article  Google Scholar 

  6. 6

    Y. J. Zhang, Q. Zheng, X. R. Zhu, Z. Yuan, and K. Xia, Sci. China-Phys. Mech. Astron. 63, 277531 (2020).

    ADS  Article  Google Scholar 

  7. 7

    Y. Chen, Y. K. Cheng, R. B. Zhu, F. F. Wang, H. T. Cheng, Z. H. Liu, C. X. Fan, Y. X. Xue, Z. C. Yu, J. K. Zhu, X. Y. Hu, and Q. H. Gong, Sci. China-Phys. Mech. Astron. 62, 044201 (2018).

    Article  Google Scholar 

  8. 8

    P. Chen, B. Lin, I. Wang, T. Hou, J. Ye, S. Vrudhula, J. Seo, Y. Cao, S. Yu, in Mitigating effects of non-ideal synaptic device characteristics for on-chip learning: 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (IEEE, Austin, 2015), pp. 194–199.

    Google Scholar 

  9. 9

    Z. Chen, B. Gao, Z. Zhou, P. Huang, H. Li, W. Ma, D. Zhu, L. Liu, J. Kang, H.-Y. Chen, in Optimized learning scheme for grayscale image recognition in a RRAM based analog neuromorphic system: 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, Washington, DC, 2015), pp. 17.7.1–17.7.4.

    Google Scholar 

  10. 10

    Y. Lin, C. Wang, Y. Ren, Z. Wang, H. Xu, X. Zhao, J. Ma, and Y. Liu, Small Methods 3, 1900160 (2019).

    Article  Google Scholar 

  11. 11

    A. Prakash, D. Jana, and S. Maikap, Nanoscale Res. Lett. 8, 418 (2013).

    ADS  Article  Google Scholar 

  12. 12

    T. Kim, H. Kim, J. Kim, and J. J. Kim, IEEE Electron Device Lett. 38, 1228 (2017).

    ADS  Article  Google Scholar 

  13. 13

    J. Woo, and S. Yu, IEEE Nanotechnol. Mag. 12, 36 (2018).

    Article  Google Scholar 

  14. 14

    J. Zhao, Z. Zhou, Y. Zhang, J. Wang, L. Zhang, X. Li, M. Zhao, H. Wang, Y. Pei, Q. Zhao, Z. Xiao, K. Wang, C. Qin, G. Wang, H. Li, B. Ding, F. Yan, K. Wang, D. Ren, B. Liu, and X. Yan, J. Mater. Chem. C 7, 1298 (2019).

    Article  Google Scholar 

  15. 15

    W. Wang, R. Wang, T. Shi, J. Wei, R. Cao, X. Zhao, Z. Wu, X. Zhang, J. Lu, H. Xu, Q. Li, Q. Liu, and M. Liu, IEEE Electron Device Lett. 40, 1407 (2019).

    ADS  Article  Google Scholar 

  16. 16

    J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, and H. Hwang, IEEE Electron Device Lett. 37, 994 (2016).

    ADS  Article  Google Scholar 

  17. 17

    R. Wang, T. Shi, X. Zhang, W. Wang, J. Wei, J. Lu, X. Zhao, Z. Wu, R. Cao, S. Long, Q. Liu, and M. Liu, Materials 11, 2102 (2018).

    ADS  Article  Google Scholar 

  18. 18

    Q. Liu, X. M. Zhang, Q. Luo, X. L. Zhao, H. B. Lv, S. B. Long, and M. Liu, Sci. China-Phys. Mech. Astron. 61, 088711 (2018).

    ADS  Article  Google Scholar 

  19. 19

    K. Moon, M. Kwak, J. Park, D. Lee, and H. Hwang, IEEE Electron Device Lett. 38, 1023 (2017).

    ADS  Article  Google Scholar 

  20. 20

    Y. Abbas, Y. R. Jeon, A. S. Sokolov, S. Kim, B. Ku, and C. Choi, Sci. Rep. 8, 1228 (2018).

    ADS  Article  Google Scholar 

  21. 21

    B. Ku, Y. Abbas, S. Kim, A. S. Sokolov, Y. R. Jeon, and C. Choi, J. Alloys Compd. 797, 277 (2019).

    Article  Google Scholar 

  22. 22

    Q. Xia, and J. J. Yang, Nat. Mater. 18, 309 (2019).

    ADS  Article  Google Scholar 

  23. 23

    Y. J. Jeong, S. Kim, and W. D. Lu, Appl. Phys. Lett. 107, 173105 (2015).

    ADS  Article  Google Scholar 

  24. 24

    F. Miao, J. P. Strachan, J. J. Yang, M. X. Zhang, I. Goldfarb, A. C. Torrezan, P. Eschbach, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 23, 5633 (2011).

    Article  Google Scholar 

  25. 25

    H. Jiang, L. Han, P. Lin, Z. Wang, M. H. Jang, Q. Wu, M. Barnell, J. J. Yang, H. L. Xin, and Q. Xia, Sci. Rep. 6, 28525 (2016).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tuo Shi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Shi, T., Zhang, X. et al. Impact of Ta/Ti electrodes on linearities of TaOx-based resistive random-access memories for neuromorphic computing. Sci. China Phys. Mech. Astron. 63, 297311 (2020).

Download citation


  • RRAM
  • conductance reading linearity
  • conductance updating linearity
  • neuromorphic computing