Advertisement

Bounds on Higgs and top quark masses from vacuum stability (degeneracy) with gravitational contributions

  • Zhuang Li
  • Guo-Li Liu
  • Fei Wang
  • Lin Wang
Article
  • 27 Downloads

Abstract

Based on the two-loop RGE of standard model gauge, top-Yukawa as well as scalar quartic couplings with full one-loop gravitational contributions in harmonic gauge, we study the constraints on the Higgs and top quark mass from the requirement that the other degenerate vacua at the Planck-dominated region exists. Our numerical calculations show that nature will not develop the other degenerate vacua at the Planck-dominated region with current Higgs and top quark masses. On the other hand, requiring the existence of the other degenerate vacua at the Planck-dominated region will constrain the Higgs and top mass to lie at approximately 130 and 174 GeV, respectively.

Keywords

gravitational contributions top-Yukawa coupling MPCP RGE 

References

  1. 1.
    G. Aad, et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012), arXiv: 1202.1408.ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan, et al. (CMS Collaboration), Phys. Lett. B 710, 26 (2012), arXiv: 1202.1488.ADSCrossRefGoogle Scholar
  3. 3.
    G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and A. Strumia, J. High Energ. Phys. 2012, 98 (2012), arXiv: 1205.6497.CrossRefGoogle Scholar
  4. 4.
    D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, and A. Strumia, arXiv: 1307.3536.Google Scholar
  5. 5.
    M. Holthausen, K. S. Lim, and M. Lindner, J. High Energ. Phys. 2012, 37 (2012), arXiv: 1112.2415.CrossRefGoogle Scholar
  6. 6.
    J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, and A. Strumia, Phys. Lett. B 709, 222 (2012), arXiv: 1112.3022.ADSCrossRefGoogle Scholar
  7. 7.
    C. D. Froggatt, and H. B. Nielsen, Phys. Lett. B 368, 96 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    M. Shaposhnikov, and C. Wetterich, Phys. Lett. B 683, 196 (2010), arXiv: 0912.0208.ADSCrossRefGoogle Scholar
  9. 9.
    S. P. Robinson, and F. Wilczek, Phys. Rev. Lett. 96, 231601 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    A. R. Pietrykowski, Phys. Rev. Lett. 98, 061801 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    O. Zanusso, L. Zambelli, G. P. Vacca, and R. Percacci, Phys. Lett. B 689, 90 (2010), arXiv: 0904.0938ADSCrossRefGoogle Scholar
  12. 11a.
    D. J. Toms, Phys. Rev. D 76, 045015 (2007), arXiv: 0708.2990ADSMathSciNetCrossRefGoogle Scholar
  13. 12a.
    D. Ebert, J. Plefka, and A. Rodigast, Phys. Lett. B 660, 579 (2008), arXiv: 0710.1002.ADSMathSciNetCrossRefGoogle Scholar
  14. 12.
    Y. Tang, and Y. L. Wu, Commun. Theor. Phys. 57, 629 (2012), arXiv: 1012.0626.ADSCrossRefGoogle Scholar
  15. 13.
    D. J. Toms, Nature 468, 56 (2010), arXiv: 1010.0793ADSCrossRefGoogle Scholar
  16. 15a.
    P. T. Mackay, and D. J. Toms, Phys. Lett. B 684, 251 (2010), arXiv: 0910.1703.ADSMathSciNetCrossRefGoogle Scholar
  17. 14.
    H. J. He, X. F. Wang, and Z. Z. Xianyu, Phys. Rev. D 83, 125014 (2011), arXiv: 1008.1839.ADSCrossRefGoogle Scholar
  18. 15.
    E. Kiritsis, and C. Kounnas, Nucl. Phys. B 442, 472 (1995).ADSCrossRefGoogle Scholar
  19. 16.
    J. E. Daum, U. Harst, and M. Reuter, J. High Energ. Phys. 2010, 84 (2010), arXiv: 0910.4938.CrossRefGoogle Scholar
  20. 17.
    Y. Tang, and Y. L. Wu, J. High Energ. Phys. 2011, 73 (2011), arXiv: 1109.4001.ADSCrossRefGoogle Scholar
  21. 18.
    V. Branchina, and E. Messina, Phys. Rev. Lett. 111, 241801 (2013), arXiv: 1307.5193.ADSCrossRefGoogle Scholar
  22. 19.
    Z. Lalak, M. Lewicki, and P. Olszewski, arXiv: 1402.3826.Google Scholar
  23. 20.
    N. Haba, K. Kaneta, R. Takahashi, and Y. Yamaguchi, Phys. Rev. D 91, 016004 (2015), arXiv: 1408.5548.ADSCrossRefGoogle Scholar
  24. 21.
    Y. L. Wu, Int. J. Mod. Phys. A 18, 5363 (2003); Mod. Phys. Lett. A 19, 2191 (2004).ADSCrossRefGoogle Scholar
  25. 22.
    G. Cynolter, and E. Lendvai, arXiv: 1002.4490.Google Scholar
  26. 23.
    F. Wang, Nucl. Phys. B 884, 193 (2014), arXiv: 1312.1925.ADSCrossRefGoogle Scholar
  27. 24.
    M. E. Machacek, and M. T. Vaughn, Nucl. Phys. B 222, 83 (1983); Nucl. Phys. B 236, 221 (1984); Nucl. Phys. B 249, 70 (1985).ADSCrossRefGoogle Scholar
  28. 25.
    J. Beringer, et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).ADSCrossRefGoogle Scholar
  29. 26.
    M. Luo, and Y. Xiao, Phys. Rev. Lett. 90, 011601 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsZhengzhou UniversityZhengzhouChina
  2. 2.State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics ChinaChinese Academy of SciencesBeijingChina

Personalised recommendations