Advertisement

Parameter vertex method and its parallel solution for evaluating the dynamic response bounds of structures with interval parameters

  • ZhiPing Qiu
  • PengBo Wang
Article
  • 18 Downloads

Abstract

In this article, we propose a parameter vertex method to determine the upper and lower bounds of the dynamic response of structures with interval parameters, which can be regarded as an extension of the matrix vertex method proposed by Qiu and Wang. The matrix vertex method requires considerable computation time and encounters the dependency problem in practice, thereby limiting its application in engineering. The proposed parameter vertex method can avoid the dependency problem, and the number of possible vertex combinations in the proposed method is significantly less than that in the matrix vertex method. The parameter vertex method requires that each matrix element in the dynamic differential equation is monotonic with respect to the uncertain parameter, and that the dynamic response reaches its extreme value when the uncertain parameter is at its endpoint. To further reduce the runtime, both vertical and transversal parallel algorithms are introduced and integrated into the parameter vertex method to improve its computational efficiency. Two numerical examples are presented to demonstrate the proposed method combined with both parallel algorithms. The performances of the two parallel algorithms are thoroughly studied. The parameter vertex method combined with parallel algorithm can be used for large-scale computing.

Keywords

parameter vertex method dynamic response interval parameter parallel algorithm upper and lower bounds 

References

  1. 1.
    Y. Ben-Haim, and I. Elishakoff, Convex Models of Uncertainty in Applied Mechanics (Elsevier, New York, 1990), p. 20.zbMATHGoogle Scholar
  2. 2 Z.
    P. Qiu, and L. Wang, Sci. China-Phys. Mech. Astron. 59, 114632 (2016).CrossRefGoogle Scholar
  3. 3.
    S. S. Rao, and L. Berke, AIAA J. 35, 727 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    G. Augusti, A. Baratta, and F. Casciati, Probabilistic Methods in Structural Engineering (CRC, Boca Raton, 1984), p. 16.Google Scholar
  5. 5.
    Z. Lv, and Z. Qiu, Acta Mech. Sin. 32, 941 (2016).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C. J. Astill, S. B. Imosseir, and M. Shinozuka, J. Struct. Mech. 1, 63 (1972).CrossRefGoogle Scholar
  7. 7.
    R. Ghanem, and P. D. Spanos, J. Appl. Mech. 57, 197 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    G. Stefanou, Comput. Methods Appl. Mech. Eng. 198, 1031 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    L. Wang, C. Xiong, R. X. Wang, X. J. Wang, and D. Wu, Sci. China- Phys. Mech. Astron. 60, 094611 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    I. Elishakoff, Appl. Mech. Rev. 51, 209 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    L. Wang, D. Liu, Y. Yang, X. Wang, and Z. Qiu, Comput. Methods Appl. Mech. Eng. 326, 573 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    I. Elishakoff, and J. T. P. Yao, Probabilistic Methods in the Theory of Structures (Wiley, New York, 1983), p. 17.Google Scholar
  13. 13.
    L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis (Springer, Berlin, 2001), p. 10.CrossRefzbMATHGoogle Scholar
  14. 14.
    R. E. Moore, Methods and Applications of Interval Analysis (Prentice-Hall, London, 1979), p. 105.CrossRefGoogle Scholar
  15. 15.
    W. Verhaeghe, W. Desmet, D. Vandepitte, and D. Moens, Comput. Methods Appl. Mech. Eng. 260, 50 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    I. Elishakoff, Y. W. Li, and J. H. Starnes Jr., Comput. Methods Appl. Mech. Eng. 111, 155 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    A. Kareem, and W. J. Sun, Eng. Struct. 12, 2 (1990).CrossRefGoogle Scholar
  18. 18.
    N. Impollonia, and G. Muscolino, Comput. Methods Appl. Mech. Eng. 200, 1945 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    S. H. Chen, and X. W. Yang, Finite Elem. Anal. Des. 34, 75 (2000).CrossRefGoogle Scholar
  20. 20.
    Z. Lv, Z. Qiu, and Q. Li, J. Comp. Acous. 25, 1750009 (2017).CrossRefGoogle Scholar
  21. 21.
    S. Chen, H. Lian, and X. Yang, Int. J. Numer. Meth. Engng. 53, 393 (2002).CrossRefGoogle Scholar
  22. 22.
    S. McWilliam, Comput. Struct. 79, 421 (2001).CrossRefGoogle Scholar
  23. 23.
    Z. Qiu, Y. Xia, and J. Yang, Comput. Methods Appl. Mech. Eng. 196, 4965 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    Z. Qiu, and X. Wang, Int. J. Solids Struct. 40, 5423 (2003).CrossRefGoogle Scholar
  25. 25.
    Z. Qiu, and X. Wang, Acta Mech. Sin. 25, 367 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    X. Guo, W. Bai, and W. Zhang, Int. J. Numer. Meth. Engng. 76, 253 (2008).CrossRefGoogle Scholar
  27. 27.
    Z. Qiu, and Z. Lv, Int. J. Numer. Meth. Engng. 112, 711 (2017).CrossRefGoogle Scholar
  28. 28.
    X. Guo, J. Du, and X. Gao, Int. J. Numer. Meth. Engng. 86, 953 (2011).CrossRefGoogle Scholar
  29. 29.
    X. Guo, W. Bai, W. Zhang, and X. Gao, Comput. Methods Appl. Mech. Eng. 198, 3378 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    X. Guo, W. Bai, and W. Zhang, Comput. Struct. 87, 246 (2009).CrossRefGoogle Scholar
  31. 31.
    W. Dong, and H. C. Shah, Fuzzy Sets Syst. 24, 65 (1987).CrossRefGoogle Scholar
  32. 32.
    L. Chen, and S. S. Rao, Finite Elem. Anal. Des. 27, 69 (1997).CrossRefGoogle Scholar
  33. 33.
    S. S. Rao, and L. Chen, Int. J. Numer. Meth. Engng. 43, 391 (1998).CrossRefGoogle Scholar
  34. 34.
    L. Wang, and X. Wang, Inverse Probl. Sci. Eng. 23, 1313 (2015).MathSciNetCrossRefGoogle Scholar
  35. 35.
    X. Wang, and L. Wang, Math. Comput. Model. 54, 2725 (2011).CrossRefGoogle Scholar
  36. 36.
    L. Wang, X. Wang, and X. Li, Eng. Comput. 33, 1070 (2016).CrossRefGoogle Scholar
  37. 37.
    L. Wang, X. Wang, and Y. Xia, Acta Mech. 225, 413 (2014).CrossRefGoogle Scholar
  38. 38.
    L. Wang, X. Wang, X. Chen, and R. Wang, Acta Mech. 226, 3221 (2015).MathSciNetCrossRefGoogle Scholar
  39. 39.
    L. Wang, X. Wang, R. Wang, and X. Chen, Math. Probl. Eng. 2015, 1 (2015).Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Solid MechanicsBeihang UniversityBeijingChina

Personalised recommendations