Oxygen vacancies effects on phase diagram of epitaxial La1–x Sr x MnO3 thin films

  • Qian Wan
  • KuiJuan Jin
  • QingQing Li
  • YaQing Feng
  • Can Wang
  • Chen Ge
  • Meng He
  • HuiBin Lu
  • HaiZhong Guo
  • XiaoLong Li
  • YuPing Yang
  • GuoZhen Yang
Article

Abstract

We investigated the effects of oxygen vacancies on the structural, magnetic, and transport properties of La1–x Sr x MnO3 (x=0.1, 0.2, 0.33, 0.4, and 0.5) grown around a critical point (without/with oxygen vacancies) under low oxygen pressure (10 Pa) and high oxygen pressure (40 Pa). We found that all films exhibit ferromagnetic behavior below the magnetic critical temperature, and that the films grown under low oxygen pressures have degraded magnetic properties with lower Curie temperatures and smaller magnetic moments. These results show that in epitaxial La1–x Sr x MnO3 thin films, the magnetic and transport properties are very sensitive to doping concentration and oxygen vacancies. Phase diagrams of the films based on the doping concentration and oxygen vacancies were plotted and discussed.

Keywords

La1–xSrxMnO3 thin films phase diagram oxygen vacancies 

References

  1. 1.
    P. Mandal, and S. Das, Phys. Rev. B 56, 15073 (1997).CrossRefADSGoogle Scholar
  2. 2.
    A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).CrossRefADSGoogle Scholar
  3. 3.
    T. T. Shang, X. Y. Liu, and L. Gu, Sci. China-Phys. Mech. Astron. 59, 697001 (2016).CrossRefGoogle Scholar
  4. 4.
    X. X. Chen, G. Z. Liu, X. Zhu, J. Qiu, J. L. Yao, M. Zhao, Y. C. Jiang, R. Zhao, and J. Gao, Sci. China-Phys. Mech. Astron. 59, 677521 (2016).CrossRefGoogle Scholar
  5. 5.
    T. Elovaara, H. Huhtinen, S. Majumdar, and P. Paturi, J. Phys.-Condens. Matter 24, 216002 (2012).Google Scholar
  6. 6.
    A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature 388, 50 (1997).CrossRefADSGoogle Scholar
  7. 7.
    B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater. 3, 164 (2004).CrossRefADSGoogle Scholar
  8. 8.
    X. Z. Tian, L. F. Wang, X. M. Li, J. K. Wei, S. Z. Yang, Z. Xu, W. L. Wang, and X. D. Bai, Sci. China-Phys. Mech. Astron. 56, 2361 (2013).CrossRefADSGoogle Scholar
  9. 9.
    K. Miyano, T. Tanaka, Y. Tomioka, and Y. Tokura, Phys. Rev. Lett. 78, 4257 (1997).CrossRefADSGoogle Scholar
  10. 10.
    J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Nature 392, 794 (1998).CrossRefADSGoogle Scholar
  11. 11.
    C. Israel, M. J. Calderón, and N. D. Mathur, Mater. Today 10, 24 (2007).CrossRefGoogle Scholar
  12. 12.
    A. M. Haghiri-Gosnet, and J. P. Renard, J. Phys. D-Appl. Phys. 36, R127 (2003).CrossRefADSGoogle Scholar
  13. 13.
    A. Asamitsu, Y. Moritomo, R. Kumai, Y. Tomioka, and Y. Tokura, Phys. Rev. B 54, 1716 (1996).CrossRefADSGoogle Scholar
  14. 14.
    J. Hemberger, A. Krimmel, T. Kurz, H. A. Krug Von Nidda, V. Y. Ivanov, A. A. Mukhin, A. M. Balbashov, and A. Loidl, Phys. Rev. B 66, 094410 (2002).CrossRefADSGoogle Scholar
  15. 15.
    A. Ohtomo, and H. Y. Hwang, Nature 441, 120 (2006).CrossRefADSGoogle Scholar
  16. 16.
    H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, and Y. Tokura, Appl. Phys. Lett. 89, 052506 (2006).CrossRefADSGoogle Scholar
  17. 17.
    A. Bhattacharya, S. J. May, S. G. E. Te Velthuis, M. Warusawithana, X. Zhai, B. Jiang, J. M. Zuo, M. R. Fitzsimmons, S. D. Bader, and J. N. Eckstein, Phys. Rev. Lett. 100, 257203 (2008), arXiv: 0710.1452.CrossRefADSGoogle Scholar
  18. 18.
    J. N. Eckstein, Nat. Mater. 6, 473 (2007).CrossRefADSGoogle Scholar
  19. 19.
    D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature 430, 657 (2004).CrossRefADSGoogle Scholar
  20. 20.
    F. Yang, K. J. Jin, H. B. Lu, M. He, C. Wang, J. Wen, and G. Z. Yang, Sci. China-Phys. Mech. Astron. 53, 852 (2010).CrossRefADSGoogle Scholar
  21. 21.
    Z. Xu, K. Jin, L. Gu, Y. Jin, C. Ge, C. Wang, H. Guo, H. Lu, R. Zhao, and G. Yang, Small 8, 1279 (2012).CrossRefGoogle Scholar
  22. 22.
    P. Gao, Z. Kang, W. Fu, W. Wang, X. Bai, and E. Wang, J. Am. Chem. Soc. 132, 4197 (2010).CrossRefGoogle Scholar
  23. 23.
    M. Rajeswari, R. Shreekala, A. Goyal, S. E. Lofland, S. M. Bhagat, K. Ghosh, R. P. Sharma, R. L. Greene, R. Ramesh, T. Venkatesan, and T. Boettcher, Appl. Phys. Lett. 73, 2672 (1998).CrossRefADSGoogle Scholar
  24. 24.
    S. Picozzi, C. Ma, Z. Yang, R. Bertacco, M. Cantoni, A. Cattoni, D. Petti, S. Brivio, and F. Ciccacci, Phys. Rev. B 75, 094418 (2007).CrossRefADSGoogle Scholar
  25. 25.
    R. Zhao, K. Jin, Z. Xu, H. Guo, L. Wang, C. Ge, H. Lu, and G. Yang, Appl. Phys. Lett. 102, 122402 (2013).CrossRefADSGoogle Scholar
  26. 26.
    Z. Li, M. Bosman, Z. Yang, P. Ren, L. Wang, L. Cao, X. Yu, C. Ke, M. B. H. Breese, A. Rusydi, W. Zhu, Z. Dong, and Y. L. Foo, Adv. Funct. Mater. 22, 4312 (2012).CrossRefGoogle Scholar
  27. 27.
    R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev. B 58, 11583 (1998).CrossRefADSGoogle Scholar
  28. 28.
    C. A. F. Vaz, J. A. Moyer, D. A. Arena, C. H. Ahn, and V. E. Henrich, Phys. Rev. B 90, 024414 (2014).CrossRefADSGoogle Scholar
  29. 29.
    X. Yin, M. A. Majidi, X. Chi, P. Ren, L. You, N. Palina, X. Yu, C. Diao, D. Schmidt, B. Wang, P. Yang, M. B. H. Breese, J. Wang, and A. Rusydi, NPG Asia Mater. 7, e196 (2015).Google Scholar
  30. 30.
    V. Markovich, G. Jung, Y. Yuzhelevskii, G. Gorodetsky, F. X. Hu, and J. Gao, Phys. Rev. B 75, 104419 (2007).CrossRefADSGoogle Scholar
  31. 31.
    E. Dagotto, Nanoscale phase separation and colossal magnetoresistance (Springer, New York, 2003).CrossRefGoogle Scholar
  32. 32.
    H. Guo, J. Wang, X. He, Z. Yang, Q. Zhang, K. Jin, C. Ge, R. Zhao, L. Gu, Y. Feng, W. Zhou, X. Li, Q. Wan, M. He, C. Hong, Z. Guo, C. Wang, H. Lu, K. Ibrahim, S. Meng, H. Yang, and G. Yang, Adv. Mater. Interfaces 3, 1500753 (2016).CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Qian Wan
    • 1
    • 2
  • KuiJuan Jin
    • 1
    • 2
    • 3
  • QingQing Li
    • 1
    • 4
  • YaQing Feng
    • 1
    • 2
  • Can Wang
    • 1
    • 2
  • Chen Ge
    • 1
  • Meng He
    • 1
  • HuiBin Lu
    • 1
  • HaiZhong Guo
    • 1
  • XiaoLong Li
    • 5
  • YuPing Yang
    • 4
  • GuoZhen Yang
    • 1
    • 2
    • 3
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina
  4. 4.School of ScienceMinzu University of ChinaBeijingChina
  5. 5.Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations