Skip to main content
Log in

Entanglement concentration with strong projective measurement in an optomechanical system

  • Article
  • Special Topic: Optomechanics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this work, we study an entanglement concentration scheme in a 3-mode optomechanical system. The scheme is based on phonon counting measurements, which can be performed through photon counting of an auxiliary cavity connected to the mechanical resonator. The amount of entanglement between the two cavity output modes is found to increase logarithmically with the number of detected phonons (photons). Such an entanglement concentration scheme is deterministic since, independently of the number of detected phonons (photons), the measurement always leads to an increase in output entanglement. Besides numerical simulations, we provide analytical results and physical insight for the improved entanglement and the concentration efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molmer K, Sorensen A.Multiparticle entanglement of hot trapped ions. Phys Rev Lett, 1999, 82: 1835–1838

    Article  ADS  Google Scholar 

  2. You J Q, Tsai J S, Nori F. Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits. Phys Rev B, 2003, 68: 024510

    Article  ADS  Google Scholar 

  3. Wang Y D, Chesi S, Loss D, et al. One-step multiqubit Greenberger-Horne-Zeilinger state generation in a circuit QED system. Phys Rev B, 2010, 81: 104524

    Article  ADS  Google Scholar 

  4. Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86: 1391–1452

    Article  ADS  Google Scholar 

  5. Wang Y D, Clerk A A. Using interference for high fidelity quantum state transfer in optomechanics. Phys Rev Lett, 2012, 108: 153603

    Article  ADS  Google Scholar 

  6. Tian L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys Rev Lett, 2012, 108: 153604

    Article  ADS  Google Scholar 

  7. Wang Y D, Clerk A A. Using dark modes for high-fidelity optomechanical quantum state transfer. New J Phys, 2012, 14: 105010

    Article  Google Scholar 

  8. Wang Y D, Clerk A A. Reservoir-engineered entanglement in optomechanical systems. Phys Rev Lett, 2013, 110: 253601

    Article  ADS  Google Scholar 

  9. Barzanjeh S, Abdi M, Milburn G, et al. Reversible optical-tomicrowave quantum interface. Phys Rev Lett, 2012, 109: 130503

    Article  ADS  Google Scholar 

  10. Tian L. Robust photon entanglement via quantum interference in optomechanical interfaces. Phys Rev Lett, 2013, 110: 233602

    Article  ADS  Google Scholar 

  11. Kuzyk M C, van Enk S J, Wang H. Generating robust optical entanglement in weakcoupling optomechanical systems. Phys Rev A, 2013, 88: 062341

    Article  ADS  Google Scholar 

  12. Wang Y D, Chesi S, Clerk A A. Bipartite and tripartite output entanglement in three-mode optomechanical systems. Phys Rev A, 2015, 91: 013807

    Article  ADS  Google Scholar 

  13. Andrews R, Peterson R W, Purdy T P, et al. Bidirectional and efficient conversion between microwave and optical light. Nat Phys, 2014, 10: 321–326

    Article  Google Scholar 

  14. Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722–725

    Article  ADS  Google Scholar 

  15. Deutsch D, Ekert A, Jozsa R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys Rev Lett, 1996, 77: 2818–2821

    Article  ADS  Google Scholar 

  16. Sheng Y B, Liu J, Zhao S Y. Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin Sci Bull, 2014, 59(28–29): 3507–3513

    Google Scholar 

  17. Duan L M, Giedke G, Cirac J I, et al. Entanglement purification of gaussian continuous variable quantum states. Phys Rev Lett, 2000, 84: 4002–4005

    Article  ADS  Google Scholar 

  18. Eisert J, Scheel S, Plenio MB. Distilling Gaussian states with Gaussian operations is impossible. Phys Rev Lett, 2002, 89: 137903

    Article  ADS  MathSciNet  Google Scholar 

  19. Kitagawa A, Takeoka M, Sasaki M, et al. Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states. Phys Rev A, 2006, 73: 042310

    Article  ADS  Google Scholar 

  20. Opatrn’y T, Kurizki G, Welsch D G. Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys Rev A, 2000, 61: 032302

    Article  ADS  Google Scholar 

  21. Cochrane P T, Ralph T C, Milburn G J. Teleportation improvement by conditional measurements on the two-mode squeezed vacuum. Phys Rev A, 2002, 65: 062306

    Article  ADS  Google Scholar 

  22. Browne D E, Eisert J, Scheel S, et al. Driving non-Gaussian to Gaussian states with linear optics. Phys Rev A, 2003, 67: 062320

    Article  ADS  Google Scholar 

  23. Maimaiti W, Mancini S. Efficiency of entanglement concentration by photon subtraction. Physica Scripta, 2014: 014028

  24. Gardiner C, Zoller P. Quantum Noise. 3rd ed. New York: Springer, 2004

    MATH  Google Scholar 

  25. Teufel J D, Li D, Allman M S, et al. Circuit cavity electromechanics in the strong-coupling regime. Nature, 2011, 471: 204–208

    Article  ADS  Google Scholar 

  26. Chan J, Alegre T P M, Safavi-Naeini A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478: 89–92

    Article  ADS  Google Scholar 

  27. DeJesus E X, Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary diffierential equations. Phys Rev A, 1987, 35: 5288–5290

    Article  ADS  MathSciNet  Google Scholar 

  28. Giedke G, Kraus B, Lewenstein M, et al. Separability properties of three-mode Gaussian states. Phys Rev A, 2001, 64: 052303

    Article  ADS  Google Scholar 

  29. van Loock P, Braunstein S L. Multipartite entanglement for continuous variables: A quantum teleportation network. Phys Rev Lett, 2000, 84: 3482–3485

    Article  ADS  Google Scholar 

  30. Eichenfield M, Chan J, Camacho R M, et al. Optomechanical crystals. Nature, 2009, 461: 78–82

    Article  ADS  Google Scholar 

  31. Safavi-Naeini A H, Painter O. Proposal for an optomechanical traveling wave phonon-photon translator. New J Phys, 2011, 13: 013017

    Article  Google Scholar 

  32. Vidal G, Werner R F. Computable measure of entanglement. Phys Rev A, 2002, 65: 032314

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingDan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maimaiti, W., Li, Z., Chesi, S. et al. Entanglement concentration with strong projective measurement in an optomechanical system. Sci. China Phys. Mech. Astron. 58, 1–6 (2015). https://doi.org/10.1007/s11433-015-5657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-015-5657-8

Keywords

Navigation