Skip to main content
Log in

Room-temperature epitaxial growth of V2O3 films

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Herein we report the room-temperature epitaxial growth of V2O3 films by laser molecule beam epitaxy. X-ray diffraction profiles show the room-temperature epitaxial V2O3 films orient in the [110] direction on α-Al2O3 (0001) substrates. Atomic force microscopy measurements reveal that the ultra-smooth surfaces with root-mean-square surface roughness of 0.11 nm and 0.28 nm for 10-nm-thick and 35-nm-thick V2O3 film, respectively. X-ray photoelectron spectroscopy results indicate the V3+ oxidation state in the films. Typical metal-insulator transition is observed in films at about 135 K. The resistivities at 300 K are approximately 0.8 mΩ cm and 0.5 mΩ cm for 10-nm-thick and 35-nm-thick V2O3 film, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foëx M. Dilatometric and electric studies of the anomaly of vanadium sesquioxide at low temperature. Compt Rend, 1946, 223: 1126–1128

    Google Scholar 

  2. Dernier P D, Marizio M. Crystal structure of the low-temperature antiferromagnetic phase of V2O3. Phys Rev B, 1970, 2: 3771–3776

    Article  ADS  Google Scholar 

  3. Zimmermann R, Claessen R, Reinert F, et al. Strong hybridization in vanadium oxides: Evidence from photoemission and absorption spectroscopy. J Phys-Condens Matter, 1998, 10: 5697–5716

    Article  ADS  Google Scholar 

  4. Kotliar G. Driving the electron over the edge. Science, 2003, 302: 67–69

    Article  Google Scholar 

  5. Kim H K, You H, Chiarello R P, et al. Finite-size effect on the first-order metal-insulator transition in VO2 films grown by metal-organic chemical-vapor deposition. Phys Rev B, 1993, 47: 12900–12907

    Article  ADS  Google Scholar 

  6. Rogers K D, Coath J A, Lovell M C. Characterization of epitaxially grown films of vanadium oxides. J Appl Phys, 1991, 70: 1412–1415

    Article  ADS  Google Scholar 

  7. Schuler H, Klimm S, Weissmann G, et al. Influence of strain on the electronic properties of epitaxial V2O3 thin films. Thin Solid Films, 1997, 299: 119–124

    Article  ADS  Google Scholar 

  8. Yamaguchi I, Manabe T, Kumagai T, et al. Preparation of epitaxial V2O3 films on C-, A- and R-planes of a-Al2O3 substrates by coating-pyrolysis process. Thin Solid Films, 2000, 366: 294–301

    Article  ADS  Google Scholar 

  9. Sawatzky G A, Post D. X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Phys Rev B, 1979, 20: 1546–1555

    Article  ADS  Google Scholar 

  10. Autier-Laurent S, Mercey B, Chippaux D, et al. Strain-induced pressure effect in pulsed laser deposited thin films of the strongly correlated oxide V2O3. Phys Rev B, 2006, 74: 195109–195114

    Article  ADS  Google Scholar 

  11. Sass B, Tusche C, Felsch W, et al. Structural and electronic properties of epitaxial V2O3 thin films. J Phys-Condens Matter, 2004, 16: 77–87

    Article  ADS  Google Scholar 

  12. Yang G Z, Lu H B, Chen F, et al. Laser molecular beam epitaxy and characterization of perovskite oxide thin films. J Cryst Growth, 2000, 227–228: 929–935

    Google Scholar 

  13. Allimi B S, Alpay S P, Goberman D, et al. Growth of V2O3 thin films on a-plane (110) and c-plane (001) sapphire via pulsed-laser deposition. J Mater Res, 2007, 22: 2825–1831

    Article  ADS  Google Scholar 

  14. Hryha E, Rutqvist E, Nyborg L, et al. Stoichiometric vanadium oxides studied by XPS. Surf Interface Anal, 2012, 44: 1022–1025

    Article  Google Scholar 

  15. Demeter M, Neumann M, Reichelt W. Mixed-valence vanadium oxides studied by XPS. Surf Sci, 2001, 454–456: 41–44

    Google Scholar 

  16. Silversmit G, Depla D, Poelman H, et al. Determination of the V 2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J Electron Spectrosc Relat Phenom, 2004, 135: 167–175

    Article  Google Scholar 

  17. Luo Q, Guo Q, Wang E G. Thickness-dependent metal-insulator transition in V2O3 ultrathin films. Appl Phys Lett, 2004, 84: 2337–2339

    Article  ADS  Google Scholar 

  18. Yonezawa S, Muraoka Y, Ueda Y, et al. Epitaxial strain effects on the metal-insulator transition in V2O3 thin films. Solid State Commun, 2004, 129: 245–248

    Article  ADS  Google Scholar 

  19. Grygiel C, Pautrat A, Prellier W, et al. Hysteresis in the electronic transport of V2O3 thin films: Non-exponential kinetics and range scale of phase coexistence. Eur Phys Lett, 2008, 84: 47003–47007

    Article  ADS  Google Scholar 

  20. Allimi B S, Aindow M, Alpay S P. Thickness dependence of electronic phase transitions in epitaxial V2O3 films on (0001) LiTaO3. Appl Phys Lett, 2008, 93: 112109

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiBin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lu, H., He, M. et al. Room-temperature epitaxial growth of V2O3 films. Sci. China Phys. Mech. Astron. 57, 1866–1869 (2014). https://doi.org/10.1007/s11433-014-5483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5483-4

Keywords

Navigation