Skip to main content
Log in

Photoassociation of NaRb with an asymmetric laser pulse

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate the photoassociation dynamics of cold NaRb molecule controlled by an asymmetric laser pulse called slowly-turned-on and rapidly-turned-off (STRT) laser pulse. This new shaped laser pulse has a remarkable merit, compared with the typical Gauss-type pulses, so that we can efficiently associate molecules with the state expected instead of going back to the continuum state. Using the three-state model, we solve the quantum mechanical equation with the “split operator-Fourier transform” method under the rotating-wave approximation (RWA) in propagation of the wave packet. By the projection of the obtained wave function onto each vibrational state, we can get the vibrational population of the ground electronic state. The results reveal that, with the STRT laser pulse, an efficient photoassociation process can be achieved and the vibrational distribution in the ground state can be controlled by the laser parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li G X, Huang G M, Peng J S. Coherent population trapping in multilevel laser-induced continuum structure system including cascade two-photon processes. Chin Phys, 1998, 7(6): 422–431

    Google Scholar 

  2. Eramo R, Cavalier S, Fini L, et al. Observation of a laser-induced structure in the ionization continuum of sodium atoms using photoelectron energy spectroscopy. J Phys B, 1997, 30(17): 3789–3796

    Article  ADS  Google Scholar 

  3. Faucher O, Hertz E, Lavorel B, et al. Observation of laser-induced continuum structure in the NO molecule. J Phys B, 1999, 32(18): 4485–4493

    Article  ADS  Google Scholar 

  4. Wang L R, Ma J, Ji W B, et al. Research on ultracold cesium molecule long-range states by high-resolution photoassociative spectroscopy. Sci China Ser G-Phys Mech Astron, 2008, 51(2): 147–156

    Article  MATH  ADS  Google Scholar 

  5. Bethlem H L, Berden G, Crompvoets F M H, et al. Electrostatic trapping of ammonia molecules. Nature, 2000, 406: 491–494

    Article  ADS  Google Scholar 

  6. Thorsheim H R, Weiner J, Julienne P S. Laser-induced photoassociation of ultracold sodium atoms. Phys Rev Lett, 1987, 58(23): 2420–2423

    Article  ADS  Google Scholar 

  7. Juarros E, Kirby K, Côté R. Laser-assisted ultracold lithium-hydride molecule formation: Stimulated versus spontaneous emission. J Phys B, 2006, 39: S965–S979

    Article  ADS  Google Scholar 

  8. Sage J M, Sainis S, Bergeman T, et al. Optical production of ultracold polar molecules. Phys Rev Lett, 2005, 94(20): 203001

    Article  ADS  Google Scholar 

  9. Vatasescu M. Formation of cold molecules by shaping with light the short-range interaction between cold atoms: Photoassociation with strong laser pulses. J Phys B, 2009, 42(16): 165303

    Article  ADS  Google Scholar 

  10. Luc-Koenig E, Masnou-Seeuws F, Vatasescu M. Optimizing the photoassociation of cold atoms by use of chirped laser pulses. Eur Phys J D, 2004, 31(2): 239–262

    Article  ADS  Google Scholar 

  11. Wright M J, Gensemer S D, Vala J. Control of ultracold collisions with frequency-chirped light. Phys Rev Lett, 2005, 95(6): 063001

    Article  ADS  Google Scholar 

  12. Koch C P, Kosloff R, Luc-Koenig E, et al. Photoassociation with chirped laser pulses: Calculation of the absolute number of molecules per pulse. J Phys B, 2006, 39(19): S1017

    Article  ADS  Google Scholar 

  13. Zhang W, Huang Y, Cong S L, et al. Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field. Phys Rev A, 2010, 82(6): 063411

    Article  ADS  Google Scholar 

  14. Chu T S, Han K L. Nonadiabatic time-dependent wave packet study of the D++H2 reaction system. J Phys Chem A, 2005, 109(10): 2050–2056

    Google Scholar 

  15. Chu T S, Zhang Y, Han K L. The time-dependent quantum wave packet approach to the eletronically nonadiabatic processes in chemical reactions. Int Rev Phys Chem, 2006, 25(1–2): 201–235

    Google Scholar 

  16. Chu T S, Han K L. Effect of Coriolis coupling in chemical reaction dynamics. Phys Chem Chem Phys, 2008, 10(18): 2431–2441

    Article  Google Scholar 

  17. Meng Q T, Han K L, Lou N Q, et al. Theoretical study of the femtosecond-resoved photoelectron spectrum of the NO molecule. Phys Rev A, 2003, 67(6): 063202

    Article  ADS  Google Scholar 

  18. Zhang H, Han K L, He G Z, et al. A real time dynamical calculation of 1 2 H-photodissociation. Chem Phys Lett, 1997, 271(4–6): 204–208

    ADS  Google Scholar 

  19. Hu J, Han K L, He G Z. Correlation quantum dynamics between an electron and D +2 molecule with attosecond resolution. Phys Rev Lett, 2005, 95(12): 123001

    Article  ADS  Google Scholar 

  20. Meng Q T, Zhang Q G, Han K L. Time-dependent wavepacket approach to the influence of intense fields on the population of molecular excited states. Chem Phys, 2005, 316(1–3): 93–98

    ADS  Google Scholar 

  21. Meng Q T, Yang G H, Han K L. Time-dependent wave packet approach to Rabi oscillation in strong laser field. Int J Quantum Chem, 2003, 95(1): 30–36

    Article  Google Scholar 

  22. Ma N, Wang M S, Yang C L, et al. Theoretical study of the influence of intense femtosecond laser field on the evolution of the wave packet and the population of NaRb molecule. Chin Phys B, 2010, 19(2): 023301

    Article  ADS  Google Scholar 

  23. Band Y B, Julienne P S. Ultracold-molecule production by laser-cooled atom photoassociation. Phys Rev A, 1995, 51(6): R4317–R4320

    Article  ADS  Google Scholar 

  24. Sugawara Y, Goban A, Minemoto S, et al. Laser-field-free molecular orientation with combined electrostatic and rapidly-turned-off laser fields. Phys Rev A, 2008, 77(3): 031403

    Article  ADS  Google Scholar 

  25. Muramatsu M, Hita M, Minemoto S, et al. Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off. Phys Rev A, 2009, 79(1): 011403

    Article  ADS  Google Scholar 

  26. Niu Y Y, Wang R, Cong S L, et al. Photoassociation reactions H+D+ and H++D in ultrashort pulse laser fields. Chin Phys lett, 2007, 24(12): 3400–3403

    Article  ADS  Google Scholar 

  27. Zhang C Z, Zheng B, Meng Q T, et al. Theoretical simulation of the photoassociation process for NaCs. Chin Phys B, 2013, 22(2): 023401

    Article  ADS  Google Scholar 

  28. Aymar M, Dulieu O. Calculations of transition and permanent dipole of heteronuclear alkali dimers NaK, NaRb and NaCs. Mol Phys, 2007, 105(11–12): 1733–1742

    Article  ADS  Google Scholar 

  29. Feit M D, Fleck J A, Steiger A. Solution of the Schrödinger equation by a spectral method. J Comput Phys, 1982, 47: 412–433

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingTian Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zheng, B., Niu, Y. et al. Photoassociation of NaRb with an asymmetric laser pulse. Sci. China Phys. Mech. Astron. 57, 1879–1884 (2014). https://doi.org/10.1007/s11433-013-5251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5251-x

Keywords

Navigation