Effective age of information in real-time wireless feedback control systems


Ultra-reliable and low-latency communication (URLLC) is one of the most important scenarios in forthcoming fifth generation (5G) cellular networks to ensure timely exchange of information and realize real-time wireless control. In URLLC, timely information update needs to be guaranteed since control performance, e.g., control cost and stability, is directly determined by timely control information update. In this paper, we introduce an effective age of information (EAoI) to evaluate the timeliness of information update in control process. We consider the control process with two phases: sensor to controller phase and controller to actuator phase. We adopt first-generate-first-serve (FGFS) M/M/1/1 → M/M/1/2 and FGFS M/M/1/1* → M/M/1/2* tandem queuing models to represent control process and we use finite-state Markov chains to describe control information updates. By studying state transitions, we calculate the average EAoI for both tandem queuing models. More importantly, we analyze throughput of wireless control systems and its relationship with average EAoI, which provides a guideline for URLLC system design in real-time feedback control systems. Simulation results show the advantage of using EAoI.

This is a preview of subscription content, access via your institution.


  1. 1

    Lu C, Saifullah A, Li B, et al. Real-time wireless sensor-actuator networks for industrial cyber-physical systems. Proc IEEE, 2016, 104: 1013–1024

    Article  Google Scholar 

  2. 2

    Sato K, Kawamoto Y, Nishiyama H, et al. A modeling technique utilizing feedback control theory for performance evaluation of IoT system in real-time. In: Proceedings of International Conference on Wireless Communications & Signal Processing (WCSP), 2015. 1–5

  3. 3

    Hößler T, Simsek M, Fettweis G P. Mission reliability for URLLC in wireless networks. IEEE Commun Lett, 2018, 22: 2350–2353

    Article  Google Scholar 

  4. 4

    Singh B, Tirkkonen O, Li Z, et al. Contention-based access for ultra-reliable low latency uplink transmissions. IEEE Wirel Commun Lett, 2018, 7: 182–185

    Article  Google Scholar 

  5. 5

    Nielsen J J, Liu R, Popovski P. Ultra-reliable low latency communication using interface diversity. IEEE Trans Commun, 2018, 66: 1322–1334

    Article  Google Scholar 

  6. 6

    She C, Yang C, Quek T Q S. Radio resource management for ultra-reliable and low-latency communications. IEEE Commun Mag, 2017, 55: 72–78

    Article  Google Scholar 

  7. 7

    She C, Yang C, Quek T Q S. Cross-layer optimization for ultra-reliable and low-latency radio access networks. IEEE Trans Wireless Commun, 2018, 17: 127–141

    Article  Google Scholar 

  8. 8

    Geng H, Alto P. Internet of Things and Data Analytics Handbook. Piscataway: Wiley Press, 2016

    Google Scholar 

  9. 9

    3GPP. Study on Communication for Automation in Vertical Domains. TR 22804. 2018. https://www.tech-invite.com/3m22/tinv-3gpp-22-804.html

  10. 10

    Chang B, Zhang L, Li L, et al. Optimizing resource allocation in URLLC for real-time wireless control systems. IEEE Trans Veh Technol, 2019, 68: 8916–8927

    Article  Google Scholar 

  11. 11

    Chang B, Zhao G, Chen Z, et al. Packet-drop design in URLLC for real-time wireless control systems. IEEE Access, 2019, 7: 183081

    Article  Google Scholar 

  12. 12

    Chang B, Zhao G, Zhang L, et al. Dynamic communication QoS design for real-time wireless control systems. IEEE Sens J, 2020, 20: 3005–3015

    Article  Google Scholar 

  13. 13

    Chang B, Zhao G, Chen Z, et al. D2D transmission scheme in URLLC enabled real-time wireless control systems for tactile internet. In: Proceedings of IEEE Global Communications Conference, 2019. 1–6

  14. 14

    Costa M, Codreanu M, Ephremides A. On the age of information in status update systems with packet management. IEEE Trans Inform Theor, 2016, 62: 1897–1910

    MathSciNet  Article  Google Scholar 

  15. 15

    Kaul S, Gruteser M, Rai V, et al. Minimizing age of information in vehicular networks. In: Proceedings of the 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2011. 1–9

  16. 16

    Chang B, Li L, Zhao G, et al. Age of information for actuation update in real-time wireless control systems. In: Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2020

  17. 17

    Coffman E G, Liu Z, Weber R R. Optimal robot scheduling for Web search engines. J Sched, 1998, 1: 15–29

    MathSciNet  Article  Google Scholar 

  18. 18

    Cho J, Garcia-Molina H. Synchronizing a database to improve freshness. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000. 117–128

  19. 19

    Kaul S, Yates R, Gruteser M. Real-time status: how often should one update? In: Proceedings of IEEE INFOCOM, 2011. 2731–2735

  20. 20

    Kam C, Kompella S, Ephremides A. Age of information under random updates. In: Proceedings of IEEE International Symposium on Information Theory, 2013. 66–70

  21. 21

    Kaul S, Yates R, Gruteser M. Status updates through queues. In: Proceedings of the 46th Annual Conference on Information Sciences and Systems (CISS), 2012. 1–6

  22. 22

    Kaul S, Yates R, Gruteser M. Real-time status: how often should one update? In: Proceedings of IEEE INFOCOM, 2012. 2731–2735

  23. 23

    Sun Y, Biyikoglu E, Yates R, et al. Update or wait: how to keep your data fresh. IEEE Trans Inform Theory, 2017, 63: 7492–7508

    MathSciNet  Article  Google Scholar 

  24. 24

    Bacinoglu B T, Sun Y, Uysal E, et al. Optimal status updating with a finite-battery energy harvesting source. J Commun Netw, 2019, 21: 280–294

    Article  Google Scholar 

  25. 25

    Zhong J, Yates R, Soljanin E. Timely lossless source coding for randomly arriving symbols. In: Proceedings of IEEE Information Theory Workshop (ITW), 2018. 1–5

  26. 26

    Yates R, Ciblat P, Yener A, et al. Age-optimal constrained cache updating. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), 2017. 141–145

  27. 27

    Ornee T, Sun Y. Sampling for remote estimation through queues: age of information and beyond. In: Proceedings of International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), 2019

  28. 28

    Yang H, Arafa A, Quek T, et al. Age-based scheduling policy for federated learning in mobile edge networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020

  29. 29

    Zheng X, Zhou S, Niu Z. Context-aware information lapse for timely status updates in remote control systems. 2019. ArXiv: 1908.04446

  30. 30

    Ayan O, Vilgelm M, Klugel M, et al. Age-of-information vs. value-of-information scheduling for cellular networked control systems. In: Proceedings of International Conference on Cyber-Physical Systems, 2019. 109–117

  31. 31

    Champati J, Mamduhi M, Johansson K, et al. Performance characterization using aoi in a single-loop networked control system. In: Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2019

  32. 32

    Ayan O, Vilgelm M, Kellerer W. Optimal scheduling for discounted age penalty minimization in multi-loop networked control. In: Proceedings of the 17th Annual Consumer Communications & Networking Conference (CCNC), 2020

  33. 33

    Zhang J, Wang C. On the rate-cost of gaussian linear control systems with random communication delays. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), 2018. 2441–2445

  34. 34

    Yates R D, Kaul S K. The age of information: real-time status updating by multiple sources. IEEE Trans Inform Theor, 2019, 65: 1807–1827

    MathSciNet  Article  Google Scholar 

  35. 35

    Kam C, Molnar J, Kompella S. Age of information for queues in tandem. In: Proceedings of IEEE Military Communications Conference (MILCOM), 2018. 462–467

  36. 36

    Demirel B, Gupta V, Quevedo D E, et al. On the trade-off between communication and control cost in event-triggered dead-beat control. IEEE Trans Automat Contr, 2017, 62: 2973–2980

    MathSciNet  Article  Google Scholar 

  37. 37

    Klančar G, Škrjanc I. Tracking-error model-based predictive control for mobile robots in real time. Robotics Autonom Syst, 2007, 55: 460–469

    Article  Google Scholar 

  38. 38

    Shortle J, Thompson J, Gross D, et al. Fundamentals of Queueing Theory. 5th ed. Piscataway: Wiley Press, 2018

    Google Scholar 

Download references


This work was supported in part by National Natural Science Foundation of China (Grant No. 61631004).

Author information



Corresponding author

Correspondence to Burak Kizilkaya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, B., Kizilkaya, B., Li, L. et al. Effective age of information in real-time wireless feedback control systems. Sci. China Inf. Sci. 64, 120303 (2021). https://doi.org/10.1007/s11432-020-3090-5

Download citation


  • age of information
  • communications
  • feedback control
  • queuing
  • throughput