Final size of network epidemic models: properties and connections

This is a preview of subscription content, log in to check access.


  1. 1

    Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics. Proc R Soc A-Math Phys Eng Sci, 1927, 115: 700–721

    MATH  Google Scholar 

  2. 2

    Hethcote H W. The mathematics of infectious diseases. SIAM Rev, 2000, 42: 599–653

    MathSciNet  Article  Google Scholar 

  3. 3

    Ma J, Earn D J D. Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull Math Biol, 2006, 68: 679–702

    MathSciNet  Article  Google Scholar 

  4. 4

    Pellis L, Ball F, Bansal S, et al. Eight challenges for network epidemic models. Epidemics, 2015, 10: 58–62

    Article  Google Scholar 

  5. 5

    Moreno Y, Pastor-Satorras R, Vespignani A. Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B, 2002, 26: 521–529

    Google Scholar 

  6. 6

    Bai T, Li S Y, Zou Y. Minimum input selection of reconfigurable architecture systems for structural controllability. Sci China Inf Sci, 2019, 62: 019201

    Article  Google Scholar 

  7. 7

    Newman M E J. Spread of epidemic disease on networks. Phys Rev E, 2002, 66: 016128

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (Grant Nos. 11801532, 61833005, 11747142), China Postdoctoral Science Foundation (Grant Nos. 2019T120372, 2018M630490), and Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB260).

Author information



Corresponding authors

Correspondence to Yi Wang or Jinde Cao.

Supplementary File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cao, J. Final size of network epidemic models: properties and connections. Sci. China Inf. Sci. 64, 179201 (2021).

Download citation