Microstructure, martensitic transformation and shape memory effect of polycrystalline Cu-Al-Mn-Fe alloys


In this study, two Cu-Al-Mn-Fe polycrystalline alloys were prepared, and their microstructure, reversible martensitic transformation, mechanical properties and shape memory effects were investigated. The results show that the reversible martensitic transformation temperatures of the studied alloys are between room temperature and 373 K, which are suitable for practical applications. Two typed martensites of 18R and 2H coexist both in two alloys. The bcc β (FeAl) nanoparticles are Fe-rich, Mn-rich and Cu-poor, whereas the martensite is Cu-rich, Fe-poor and Mn-poor. The size of nanoparticles ranges from tens to hundreds of nanometers. Full shape recovery property is displayed in Cu-12.9Al-4.5Mn-2.6Fe alloy all the time while applying different deformation from 5% to 8%. The maximum recoverable strain is up to 4.4% with a recovery rate of 100%.

This is a preview of subscription content, access via your institution.


  1. 1

    Otsuka K, Wayman C M. Shape Memory Materials. Cambridge University Press, Cambridge, 1998

    Google Scholar 

  2. 2

    Pan J, Shi Z Y, Wang T M. Variable-model SMA-driven spherical robot. Sci China Technol Sci, 2019, 62: 1401–1411

    Article  Google Scholar 

  3. 3

    Tong Y, Shuitcev A, Zheng Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature. Adv Eng Mater, 2020, 22: 1900496

    Article  Google Scholar 

  4. 4

    Sun Q P, Aslan A, Li M P, et al. Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci China Technol Sci, 2014, 57: 671–679

    Article  Google Scholar 

  5. 5

    Zeng J M, Jiang H C, Liu S W, et al. Damping behavior of Ti50.1Ni49.9 alloy in reverse martensitic transformation region. Sci China Technol Sci, 2012, 55: 470–474

    Article  Google Scholar 

  6. 6

    Dasgupta R. A look into Cu-based shape memory alloys: Present scenario and future prospects. J Mater Res, 2014, 29: 1681–1698

    Article  Google Scholar 

  7. 7

    Omori T, Kusama T, Kawata S, et al. Abnormal grain growth induced by cyclic heat treatment. Science, 2013, 341: 1500–1502

    Article  Google Scholar 

  8. 8

    Kusama T, Omori T, Saito T, et al. Ultra-large single crystals by abnormal grain growth. Nat Commun, 2017, 8: 354

    Article  Google Scholar 

  9. 9

    Tanaka Y, Himuro Y, Kainuma R, et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science, 2010, 327: 1488–1490

    Article  Google Scholar 

  10. 10

    Omori T, Ando K, Okano M, et al. Superelastic effect in polycrystalline Ferrous alloys. Science, 2011, 333: 68–71

    Article  Google Scholar 

  11. 11

    Omori T, Iwaizako H, Kainuma R. Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des, 2016, 101: 263–269

    Article  Google Scholar 

  12. 12

    Vollmer M, Arold T, Kriegel M J, et al. Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments. Nat Commun, 2019, 10: 2337

    Article  Google Scholar 

  13. 13

    Lexcellent C, Goo B C, Sun Q P, et al. Characterization, thermomechanical behaviour and micromechanical-based constitutive model of shape-memory CuZnAl single crystals. Acta Mater, 1996, 44: 3773–3780

    Article  Google Scholar 

  14. 14

    Somerday M, Wert J A, Comstock Jr. R J. Effect of grain size on the observed pseudoelastic behavior of a Cu-Zn-Al shape memory alloy. Metall Mat Trans A, 1997, 28: 2335–2341

    Article  Google Scholar 

  15. 15

    Arneodo Larochette P, Ahlers M. Grain-size dependence of the two-way shape memory effect obtained by stabilisation in Cu-Zn-Al crystals. Mater Sci Eng-A, 2003, 361: 249–257

    Article  Google Scholar 

  16. 16

    Cingolani E, Ahlers M, Sade M. The two way shape memory effect in CuZnAl single crystals: Role of dislocations and stabilization. Acta Metall Mater, 1995, 43: 2451–2461

    Article  Google Scholar 

  17. 17

    Otsuka K, Wayman C M, Nakai K, et al. Superelasticity effects and stress-induced martensitic transformations in CuAlNi alloys. Acta Metall, 1976, 24: 207–226

    Article  Google Scholar 

  18. 18

    Matlakhova L A, Pereira E C, Matlakhov A N, et al. Mechanical behavior and fracture characterization of a monocrystalline Cu-Al-Ni subjected to thermal cycling treatments under load. Mater Charact, 2008, 59: 1630–1637

    Article  Google Scholar 

  19. 19

    Kim J W, Roh D W, Lee E S, et al. Effects on microstructure and tensile properties of a zirconium addition to a Cu-Al-Ni shape memory alloy. MTA, 1990, 21: 741–744

    Article  Google Scholar 

  20. 20

    Ibarra A, San Juan J, Bocanegra E H, et al. Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu-Al-Ni single crystals. Acta Mater, 2007, 55: 4789–4798

    Article  Google Scholar 

  21. 21

    Sutou Y, Omori T, Yamauchi K, et al. Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire. Acta Mater, 2005, 53: 4121–4133

    Article  Google Scholar 

  22. 22

    Mallik U S, Sampath V. Influence of aluminum and manganese concentration on the shape memory characteristics of Cu-Al-Mn shape memory alloys. J Alloys Compd, 2008, 459: 142–147

    Article  Google Scholar 

  23. 23

    Kainuma R, Satoh N, Liu X J, et al. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu-Al-Mn system. J Alloys Compd, 1998, 266: 191–200

    Article  Google Scholar 

  24. 24

    Kainuma R, Takahashi S, Ishida K. Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys. MMTA, 1996, 27: 2187–2195

    Article  Google Scholar 

  25. 25

    Jiao Z, Wang Q, Yin F, et al. Special corrosion behavior of an inoculant refined Cu-Al-Mn shape memory alloy during electropolishing process. Mater Charact, 2019, 153: 348–353

    Article  Google Scholar 

  26. 26

    Sutou Y, Omori T, Kainuma R, et al. Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control. Metall Mat Trans A, 2002, 33: 2817–2824

    Article  Google Scholar 

  27. 27

    Silva R A G, Gama S, Paganotti A, et al. Effect of Ag addition on phase transitions of the Cu-22.26 at.%Al-9.93 at.%Mn alloy. Therm Acta, 2013, 554: 71–75

    Article  Google Scholar 

  28. 28

    Canbay C A, Ozgen S, Genc Z K. Thermal and microstructural investigation of Cu-Al-Mn-Mg shape memory alloys. Appl Phys A, 2014, 117: 767–771

    Article  Google Scholar 

  29. 29

    Canbay C A, Genc Z K, Sekerci M. Thermal and structural characterization of Cu-Al-Mn-X (Ti, Ni) shape memory alloys. Appl Phys A, 2014, 115: 371–377

    Article  Google Scholar 

  30. 30

    Sutou Y, Kainuma R, Ishida K. Effect of alloying elements on the shape memory properties ofductile Cu-Al-Mn alloys. Mater Sci EngA, 1999, 273–275: 375–379

    Article  Google Scholar 

  31. 31

    Mallik U S, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu-Al-Mn shape memory alloy. J Alloys Compd, 2009, 469: 156–163

    Article  Google Scholar 

  32. 32

    Chen X, Zhang F, Chi M, et al. Microstructure, superelasticity and shape memory effect by stress-induced martensite stabilization in Cu-Al-Mn-Ti shape memory alloys. Mater Sci Eng-B, 2018, 236–237: 10–17

    Article  Google Scholar 

  33. 33

    Yang S, Omori T, Wang C, et al. A jumping shape memory alloy under heat. Sci Rep, 2016, 6: 21754

    Article  Google Scholar 

  34. 34

    Yang S, Chi M, Zhang J, et al. Shape memory effect promoted through martensite stabilization induced by the precipitates in Cu-Al-Mn-Fe alloys. Mater Sci Eng-A, 2019, 739: 455–462

    Article  Google Scholar 

  35. 35

    Wang C P, Liu X J, Ohnuma I, et al. Thermodynamic database of the phase diagrams in Cu-Fe base ternary systems. J Phs Eqil Diff, 2004, 25: 320–328

    Article  Google Scholar 

  36. 36

    Umino R, Liu X J, Sutou Y, et al. Experimental determination and thermodynamic calculation of phase equilibria in the Fe-Mn-Al system. JPED, 2006, 27: 54–62

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to ShuiYuan Yang or XingJun Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 51971185), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515010069), the Shenzhen Science and Technology Project (Grant No. JCYJ20190809162401686). We also thank Y. X. Huang, J. B. Zhang, K. B. He and W. Zheng for helping experimental procedures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Hong, S., Li, M. et al. Microstructure, martensitic transformation and shape memory effect of polycrystalline Cu-Al-Mn-Fe alloys. Sci. China Technol. Sci. 64, 400–406 (2021). https://doi.org/10.1007/s11431-020-1617-x

Download citation


  • shape memory alloy
  • microstructure
  • nanoparticles
  • transmission electron microscopy
  • martensitic transformation
  • shape memory effect