Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration

Abstract

Vibration energy harvesting is a promising approach for sustainable energy generation from ambience to meet the development of self-powered systems. Here, we propose a novel compact non-resonant magnetically modulated rotational energy harvester (MMR-EH) for low frequency and irregular vibration. Through the rational arrangement of multiple magnetic fields in space, a ring route with low potential energy is established. A movable magnet can be non-contact modulated by the magnetic force to move along the ring route under irregular vibration, which is instrumental in electromechanical energy conversion. A dynamic model of the MMR-EH is developed based on the energy method and verified experimentally. The effects of key parameters on the magnetically modulated route are analysed. The simulation and experimental results demonstrate that the MMR-EH can effectively harvest the energy from ultra-low frequency (3 Hz) and irregular vibration. At a reciprocating vibration frequency of 10 Hz and an amplitude of 20 mm, the harvester can produce an average power of 0.29 mW.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Zou H X, Zhao L C, Gao Q H, et al. Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Appl Energy, 2019, 255: 113871

    Article  Google Scholar 

  2. 2

    Mei X, Zhou S, Yang Z, et al. A tri-stable energy harvester in rotational motion: Modeling, theoretical analyses and experiments. J Sound Vib, 2020, 469: 115142

    Article  Google Scholar 

  3. 3

    Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers Manage, 2019, 181: 645–652

    Article  Google Scholar 

  4. 4

    Zhong Y, Zhao H, Guo Y, et al. An easily assembled electromagnetictriboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Adv Mater Technol, 2019, 4: 1900741

    Article  Google Scholar 

  5. 5

    Liu H, Zhong J, Lee C, et al. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl Phys Rev, 2018, 5: 041306

    Article  Google Scholar 

  6. 6

    Liu W, Han M D, Meng B, et al. Low frequency wide bandwidth MEMS energy harvester based on spiral-shaped PVDF cantilever. Sci China Tech Sci, 2014, 57: 1068–1072

    Article  Google Scholar 

  7. 7

    Huang D, Zhou S, Yang Z. Resonance mechanism of nonlinear vibrational multistable energy harvesters under narrow-band stochastic parametric excitations. Complexity, 2019, 2019: 1050143

    Google Scholar 

  8. 8

    Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2: 642–697

    Article  Google Scholar 

  9. 9

    Zhao L C, Zou H X, Yan G, et al. Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Convers Manage, 2019, 201: 112166

    Article  Google Scholar 

  10. 10

    Zhou C, Zou H X, Wei K X. et al. Enhanced performance of piezoelectric wind energy harvester by a curved plate. Smart Mater Struct, 2019, 28: 125022

    Article  Google Scholar 

  11. 11

    Gholikhani M, Nasouri R, Tahami S A, et al. Harvesting kinetic energyfrom roadway pavement through an electromagnetic speed bump. Appl Energy, 2019, 250: 503–511

    Article  Google Scholar 

  12. 12

    Haroun A, Yamada I, Warisawa S. Study of electromagnetic vibration energy harvesting with free/impact motion for low frequency operation. J Sound Vib, 2015, 349: 389–402

    Article  Google Scholar 

  13. 13

    Tao K, Wu J, Tang L, et al. Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. J Micromech Microeng, 2017, 27: 044002

    Article  Google Scholar 

  14. 14

    Le C P, Halvorsen E, Søråsen O, et al. Wideband excitation of an electrostatic vibration energy harvester with power-extracting endstops. Smart Mater Struct, 2013, 22: 075020

    Article  Google Scholar 

  15. 15

    Tao K, Yi H, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197

    Article  Google Scholar 

  16. 16

    Wang P, Pan L, Wang J, et al. An ultra-low-friction triboelectricelectromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano, 2018, 12: 9433–9440

    Article  Google Scholar 

  17. 17

    Wang J, Tang L, Zhao L, et al. Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy, 2019, 172: 1066–1078

    Article  Google Scholar 

  18. 18

    Song J D, Wang J. Ferroelectric materials for vibrational energy harvesting. Sci China Tech Sci, 2016, 59: 1012–1022

    Article  Google Scholar 

  19. 19

    Fang S, Fu X, Du X, et al. A music-box-like extended rotational plucking energy harvester with multiple piezoelectric cantilevers. Appl Phys Lett, 2019, 114: 233902

    Article  Google Scholar 

  20. 20

    Fang S, Wang S, Zhou S, et al. Exploiting the advantages of the centrifugal softening effect in rotational impact energy harvesting. Appl Phys Lett, 2020, 116: 063903

    Article  Google Scholar 

  21. 21

    Yang J, Wen Y M, Li P, et al. A magnetoelectric-based broadband vibration energy harvester for powering wireless sensors. Sci China Tech Sci, 2011, 54: 1419–1427

    MATH  Article  Google Scholar 

  22. 22

    Liang Z, Xu C D, Ren B, et al. Optimization of cantilevered piezoelectric energy harvester with a fixed resonance frequency. Sci China Tech Sci, 2014, 57: 1093–1100

    Article  Google Scholar 

  23. 23

    Zhang Y, Cao J, Zhu H, et al. Design, modeling and experimental verification of circular Halbach electromagnetic energy harvesting from bearing motion. Energy Convers Manage, 2019, 180: 811–821

    Article  Google Scholar 

  24. 24

    Li Z, Yan Z, Luo J, et al. Performance comparison of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration. Energy Convers Manage, 2019, 179: 132–140

    Article  Google Scholar 

  25. 25

    Zuo L, Scully B, Shestani J, et al. Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater Struct, 2010, 19: 045003

    Article  Google Scholar 

  26. 26

    Fan K, Cai M, Wang F, et al. A string-suspended and driven rotor for efficient ultra-low frequency mechanical energy harvesting. Energy Convers Manage, 2019, 198: 111820

    Article  Google Scholar 

  27. 27

    Fan K, Cai M, Liu H, et al. Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester. Energy, 2019, 169: 356–368

    Article  Google Scholar 

  28. 28

    Foisal A R M, Hong C, Chung G S. Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens Actuat APhys, 2012, 182: 106–113

    Article  Google Scholar 

  29. 29

    Zhao L C, Zou H X, Yan G, et al. Arbitrary-directional broadband vibration energy harvesting using magnetically coupled flextensional transducers. Smart Mater Struct, 2018, 27: 095010

    Article  Google Scholar 

  30. 30

    Zhao L C, Zou H X, Gao Q H, et al. Magnetically modulated orbit for human motion energy harvesting. Appl Phys Lett, 2019, 115: 263902

    Article  Google Scholar 

  31. 31

    Yi Z, Hu Y, Ji B, et al. Broad bandwidth piezoelectric energy harvester by a flexible buckled bridge. Appl Phys Lett, 2018, 113: 183901

    Article  Google Scholar 

  32. 32

    Choi W J, Jeon Y, Jeong J H, et al. Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceram, 2006, 17: 543–548

    Article  Google Scholar 

  33. 33

    Galchev T, Aktakka E E, Najafi K. A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. J Microelectromech Syst, 2012, 21: 1311–1320

    Article  Google Scholar 

  34. 34

    Wu Y, Qiu J, Zhou S, et al. A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting. Appl Energy, 2018, 231: 600–614

    Article  Google Scholar 

  35. 35

    Fan K, Liu S, Liu H, et al. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester. Appl Energy, 2018, 216: 8–20

    Article  Google Scholar 

  36. 36

    Yang K, Wang J, Yurchenko D. A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl Phys Lett, 2019, 115: 193901

    Article  Google Scholar 

  37. 37

    Zhang Y W, Lu Y N, Chen L Q. Energy harvesting via nonlinear energy sink for whole-spacecraft. Sci China Tech Sci, 2019, 62: 1483–1491

    Article  Google Scholar 

  38. 38

    Huang D, Zhou S, Han Q, et al. Response analysis of the nonlinear vibration energy harvester with an uncertain parameter. Proc I Mech E, 2019, doi: 10.1177/1464419319893211

    Google Scholar 

  39. 39

    Zhou S, Cao J, Inman D J, et al. Broadband tristable energy harvester: Modeling and experiment verification. Appl Energy, 2014, 133: 33–39

    Article  Google Scholar 

  40. 40

    Zou H X, Zhang W, Li W B, et al. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers Manage, 2017, 148: 1391–1398

    Article  Google Scholar 

  41. 41

    Zhang X, Zhang Z, Pan H, et al. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Convers Manage, 2016, 118: 287–294

    Article  Google Scholar 

  42. 42

    Lin T, Wang J J, Zuo L. Efficient electromagnetic energy harvester for railroad transportation. Mechatronics, 2018, 53: 277–286

    Article  Google Scholar 

  43. 43

    Pan Y, Lin T, Qian F, et al. Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation. Appl Energy, 2019, 247: 309–321

    Article  Google Scholar 

  44. 44

    Zou H X, Zhang W M, Wei K X, et al. Design and analysis of a piezoelectric vibration energy harvester using rolling mechanism. J Vib Acoustics, 2016, 138: 051007

    Article  Google Scholar 

  45. 45

    Zhao L C, Zou H X, Yan G, et al. A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Appl Energy, 2019, 239: 735–746

    Article  Google Scholar 

  46. 46

    Mallick D, Amann A, Roy S. High figure of merit nonlinear microelectromagnetic energy harvesters for wideband applications. J Microelectromech Syst, 2016, 26: 273–282

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to WenMing Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Zou, H., Gao, Q. et al. Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration. Sci. China Technol. Sci. (2020). https://doi.org/10.1007/s11431-020-1595-x

Download citation

Key words

  • energy harvesting
  • vibration
  • low frequency
  • magnetically modulated route