Spectroscopic investigation of defects mediated oxidization of single-layer MoS2

Abstract

Due to the extremely large surface to bulk ratio, the properties of single layer (SL) MoS2 are largely determined by its interaction with environment. One critical interaction process that has been intensively investigated is the oxidation process of MoS2. Despite of numerous previous explorations, the detailed mechanism regarding how MoS2 reacts with oxygen is still not well understood. In this work, we systematically investigate the impact of intrinsic and pre-created defects on the oxidation process of SL MoS2. For pristine SL MoS2, the oxidation is found to initiate near point defects and grain boundaries, leading to the formation of triangle pits in the basal plane and cracks near the grain boundaries. The pre-created defects introduced by ion irradiation are found to serve as the oxidation center, resulting in a more uniform oxidation process. The oxidation is found to introduce p-type doping in the SL MoS2, leading to the blue shift of Raman and photoluminescence (PL) spectra. The shift is found to be more for the region near the grain boundary and for the samples with more pre-created defects. Our results suggest that the presence of defects can strongly promote the oxidation reaction of SL MoS2 in ambient condition, which significantly affects the stability and functionality of materials.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature, 2018, 557: 696–700

    Article  Google Scholar 

  2. 2

    Zhu Y, Li Y, Arefe G, et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett, 2018, 18: 3807–3813

    Article  Google Scholar 

  3. 3

    Zhang H, Zhou W, Liu Q, et al. Transport properties and device-design of z-shaped MoS2 nanoribbon planar junctions. Physica E-Low-dimensional Syst NanoStruct, 2017, 93: 143–147

    Article  Google Scholar 

  4. 4

    Yang Z, Pan J, Liu Q, et al. Electronic structures and transport properties of a MoS2-NbS2 nanoribbon lateral heterostructure. Phys Chem Chem Phys, 2017, 19: 1303–1310

    Article  Google Scholar 

  5. 5

    Huang S, Ling X, Liang L, et al. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett, 2014, 14: 5500–5508

    Article  Google Scholar 

  6. 6

    Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett, 2013, 13: 5944–5948

    Article  Google Scholar 

  7. 7

    Yan Z, Xiong X, Chen Y, et al. Heterostructural bilayers of graphene and molybdenum disulfide: Configuration types, band opening and enhanced light response. Superlattices MicroStruct, 2014, 68: 56–65

    Article  Google Scholar 

  8. 8

    Agrawal A V, Kumar R, Venkatesan S, et al. Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature. ACS Sens, 2018, 3: 998–1004

    Article  Google Scholar 

  9. 9

    Li H, Yin Z, He Q, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small, 2012, 8: 63–67

    Article  Google Scholar 

  10. 10

    Perkins F K, Friedman A L, Cobas E, et al. Chemical vapor sensing with monolayer MoS2. Nano Lett, 2013, 13: 668–673

    Article  Google Scholar 

  11. 11

    Zang Y, Niu S, Wu Y, et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat Commun, 2019, 10: 1217

    Article  Google Scholar 

  12. 12

    Zhang J, Wu J, Guo H, et al. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv Mater, 2017, 29: 1701955

    Article  Google Scholar 

  13. 13

    Wang J, Yan M, Zhao K, et al. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv Mater, 2017, 29: 1604464

    Article  Google Scholar 

  14. 14

    He Z, Zhao R, Chen X, et al. Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS Appl Mater Interfaces, 2018, 10: 42524–42533

    Article  Google Scholar 

  15. 15

    Nayeri M, Moradinasab M, Fathipour M. The transport and optical sensing properties of MoS2, MoSe2, WS2 and WSe2 semiconducting transition metal dichalcogenides. Semicond Sci Technol, 2018, 33: 025002

    Article  Google Scholar 

  16. 16

    Yue Q, Shao Z, Chang S, et al. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett, 2013, 8: 425

    Article  Google Scholar 

  17. 17

    Mirabelli G, McGeough C, Schmidt M, et al. Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J Appl Phys, 2016, 120: 125102

    Article  Google Scholar 

  18. 18

    Sahoo P K, Zong H, Liu J, et al. Probing nano-heterogeneity and aging effects in lateral 2D heterostructures using tip-enhanced photo-luminescence. Opt Mater Express, 2019, 9: 1620

    Article  Google Scholar 

  19. 19

    Park W, Park J, Jang J, et al. Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology, 2013, 24: 095202

    Article  Google Scholar 

  20. 20

    Yang Y, Deng Z D. Stretchable sensors for environmental monitoring. Appl Phys Rev, 2019, 6: 011309

    Article  Google Scholar 

  21. 21

    Yang S, Jiang C, Wei S. Gas sensing in 2D materials. Appl Phys Rev, 2017, 4: 021304

    Article  Google Scholar 

  22. 22

    Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physi-sorption gating. Nano Lett, 2013, 13: 2831–2836

    Article  Google Scholar 

  23. 23

    Dolui K, Rungger I, Sanvito S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys Rev B, 2013, 87: 165402

    Article  Google Scholar 

  24. 24

    Lee K, Gatensby R, McEvoy N, et al. High-performance sensors based on molybdenum disulfide thin films. Adv Mater, 2013, 25: 6699–6702

    Article  Google Scholar 

  25. 25

    Cho B, Kim A R, Park Y, et al. Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS Appl Mater Interfaces, 2015, 7: 2952–2959

    Article  Google Scholar 

  26. 26

    Liu B, Chen L, Liu G, et al. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano, 2014, 8: 5304–5314

    Article  Google Scholar 

  27. 27

    Granborg S S, Ulstrup S, Bianchi M, et al. Synthesis of epitaxial single-layer MoS2 on Au(111). Langmuir, 2015, 31: 9700–9706

    Article  Google Scholar 

  28. 28

    Kc S, Longo R C, Wallace R M, et al. Surface oxidation energetics and kinetics on MoS2 monolayer. J Appl Phys, 2015, 117: 135301

    Article  Google Scholar 

  29. 29

    Pető J, Ollár T, Vancsó P, et al. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat Chem, 2018, 10: 1246–1251

    Article  Google Scholar 

  30. 30

    Bertolazzi S, Bonacchi S, Nan G, et al. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv Mater, 2017, 29: 1606760

    Article  Google Scholar 

  31. 31

    Sangwan V K, Jariwala D, Kim I S, et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat Nanotech, 2015, 10: 403–406

    Article  Google Scholar 

  32. 32

    Xie J, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater, 2013, 25: 5807–5813

    Article  Google Scholar 

  33. 33

    Yin Y, Han J, Zhang Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J Am Chem Soc, 2016, 138: 7965–7972

    Article  Google Scholar 

  34. 34

    Chow P K, Jacobs-Gedrim R B, Gao J, et al. Defect-induced photo-luminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9: 1520–1527

    Article  Google Scholar 

  35. 35

    Tongay S, Suh J, Ataca C, et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons. Sci Rep, 2013, 3: 2657

    Article  Google Scholar 

  36. 36

    Chen Y, Huang S, Ji X, et al. Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano, 2018, 12: 2569–2579

    Article  Google Scholar 

  37. 37

    Li G, Zhang D, Qiao Q, et al. All the catalytic active sites of MoS2 for hydrogen evolution. J Am Chem Soc, 2016, 138: 16632–16638

    Article  Google Scholar 

  38. 38

    Li H, Tsai C, Koh A L, et al. Erratum: Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater, 2016, 15: 364

    Article  Google Scholar 

  39. 39

    Martincová J, Otyepka M, Lazar P. Is single layer MoS2 stable in the air? Chem Eur J, 2017, 23: 13233–13239

    Article  Google Scholar 

  40. 40

    Gao J, Li B, Tan J, et al. Aging of transition metal dichalcogenide monolayers. ACS Nano, 2016, 10: 2628–2635

    Article  Google Scholar 

  41. 41

    Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24: 2320–2325

    Article  Google Scholar 

  42. 42

    Lee J, Pak S, Giraud P, et al. Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n-n heterojunction devices. Adv Mater, 2017, 29: 1702206

    Article  Google Scholar 

  43. 43

    Yang P, Zou X, Zhang Z, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat Commun, 2018, 9: 979

    Article  Google Scholar 

  44. 44

    Tao L, Chen K, Chen Z, et al. Centimeter-scale CVD growth of highly crystalline single-layer MoS2 film with spatial homogeneity and the visualization of grain boundaries. ACS Appl Mater Interfaces, 2017, 9: 12073–12081

    Article  Google Scholar 

  45. 45

    Ling X, Lee Y H, Lin Y, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett, 2014, 14: 464–472

    Article  Google Scholar 

  46. 46

    Lv D, Wang H, Zhu D, et al. Atomic process of oxidative etching in monolayer molybdenum disulfide. Sci Bull, 2017, 62: 846–851

    Article  Google Scholar 

  47. 47

    Yamamoto M, Einstein T L, Fuhrer M S, et al. Anisotropic etching of atomically thin MoS2. J Phys Chem C, 2013, 117: 25643–25649

    Article  Google Scholar 

  48. 48

    Wang L, Ji X, Chen F, et al. Temperature-dependent properties of monolayer MoS2 annealed in an Ar diluted S atmosphere: an experimental and first-principles study. J Mater Chem C, 2017, 5: 11138–11143

    Article  Google Scholar 

  49. 49

    Liu Z, Amani M, Najmaei S, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun, 2014, 5: 5246

    Article  Google Scholar 

  50. 50

    Nan H Y, Wang Z L, Wang W H, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8: 5738–5745

    Article  Google Scholar 

  51. 51

    Chakraborty B, Bera A, Muthu D V S, et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys Rev B, 2012, 85: 161403

    Article  Google Scholar 

  52. 52

    Wei X, Yu Z, Hu F, et al. Mo-O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS2. AIP Adv, 2014, 4: 123004

    Article  Google Scholar 

  53. 53

    Azcatl A, Kc S, Peng X, et al. HfO2 on UV-O3 exposed transition metal dichalcogenides: interfacial reactions study. 2D Mater, 2015, 2: 014004

    Article  Google Scholar 

  54. 54

    Longo R C, Addou R, Kc S, et al. Intrinsic air stability mechanisms of two-dimensional transition metal dichalcogenide surfaces: basal versus edge oxidation. 2D Mater, 2017, 4: 025050

    Article  Google Scholar 

  55. 55

    Walter T N, Kwok F, Simchi H, et al. Oxidation and oxidative vapor-phase etching of few-layer MoS2. J Vacuum Sci Tech B Nanotechnol MicroElectron-Mater Processing Measurement Phenomena, 2017, 35: 021203

    Google Scholar 

  56. 56

    Yang J, Kim S, Choi W, et al. Improved growth behavior of atomic-layer-deposited high- k dielectrics on multilayer MoS2 by oxygen plasma pretreatment. ACS Appl Mater Interfaces, 2013, 5: 4739–4744

    Article  Google Scholar 

  57. 57

    Qin P, Fang G, Ke W, et al. In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell. J Mater Chem A, 2014, 2: 2742–2756

    Article  Google Scholar 

  58. 58

    Liu X, Cao D, Yang T, et al. Insight into the structure and energy of Mo27 SxOy clusters. RSC Adv, 2017, 7: 9513–9520

    Article  Google Scholar 

  59. 59

    Mignuzzi S, Pollard A J, Bonini N, et al. Effect of disorder on Raman scattering of single-layer MoS2. Phys Rev B, 2015, 91: 195411

    Article  Google Scholar 

  60. 60

    Singha S S, Nandi D, Singha A. Tuning the photoluminescence and ultrasensitive trace detection properties of few-layer MoS2 by decoration with gold nanoparticles. RSC Adv, 2015, 5: 24188–24193

    Article  Google Scholar 

  61. 61

    Qin C, Gao Y, Qiao Z, et al. Atomic-layered MoS2 as a tunable optical platform. Adv Opt Mater, 2016, 4: 1429–1456

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to XinWei Wang or Yan Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11605063, 11975102 and 51672011), Guangzhou Science and Technology Program General Projects (Grant No. 201707010146), IAEA (CRP No. F11020 and Contract No. 21063), the Fundamental Research Funds for the Central Universities (Grant No. 2018MS40), State Key Laboratory of Pulp and Paper Engineering (Grant No. 2018TS08), Guangdong Pearl River Talent Program (Grant No. 2017GC010281), and the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2014ZT05N200).

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Z., Guo, Z., Zhong, X. et al. Spectroscopic investigation of defects mediated oxidization of single-layer MoS2. Sci. China Technol. Sci. (2020). https://doi.org/10.1007/s11431-020-1593-4

Download citation

Keywords

  • single layer MoS2
  • oxidation
  • defect