Benchmark evaluation of tomographic algorithms for simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in non-uniform flames

Abstract

With the growing applications of nanofluid flame, the monitoring and controlling of its combustion process is of paramount importance. Thus, it is necessary to develop diagnosing methods which can simultaneously image important parameters such as temperature and volume fractions of soot, metal-oxide nanoparticles. Tomographic emission spectroscopy is an effective method which has been proposed for this purpose. However, the inversion process was only reported with least-squares QR decomposition (LSQR) so far and there are numerous well-established reconstruction algorithms which have not been utilized yet. Thus, this work aims to perform systematic comparative studies on several representative algorithms for the inversion process. In the simulative studies, algorithms including Tikhonov regularization, algebraic reconstruction technique (ART), LSQR, Landweber algorithm, maximum likelihood expectation maximization (MLEM), and ordered subset expectation maximization (OSEM) were discussed. The effects of the number of iterations, the signal-to-noise ratio, and the number of projections and the calibration error in projection angles on the performance of the algorithms were investigated. Advice on selecting the suitable algorithms under different application conditions is then provided according to the extensive numerical studies.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Basu S, Miglani A. Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. Int J Heat Mass Transfer, 2016, 96: 482–503

    Article  Google Scholar 

  2. 2

    Kilian D, Engel S, Borsdorf B, et al. Spatially resolved flame zone classification of a flame spray nanoparticle synthesis process by combining different optical techniques. J Aerosol Sci, 2014, 69: 82–97

    Article  Google Scholar 

  3. 3

    Snelling D R, Thomson K A, Smallwood G J, et al. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J, 2002, 40: 1789–1795

    Article  Google Scholar 

  4. 4

    Hall R J, Bonczyk P A. Sooting flame thermometry using emission/ absorption tomography. Appl Opt, 1990, 29: 4590–4598

    Article  Google Scholar 

  5. 5

    Greenberg P S, Ku J C. Soot volume fraction maps for normal and reduced gravity laminar acetylene jet diffusion flames. Combust Flame, 1997, 108: 227–230

    Article  Google Scholar 

  6. 6

    Huang Q, Wang F, Liu D, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography. Combust Flame, 2009, 156: 565–573

    Article  Google Scholar 

  7. 7

    Liu D, Yan J H, Wang F, et al. Inverse radiation analysis of simultaneous estimation of temperature field and radiative properties in a two-dimensional participating medium. Int J Heat Mass Transfer, 2010, 53: 4474–4481

    MATH  Article  Google Scholar 

  8. 8

    Liu G, Liu D. Inverse radiation analysis for simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in a nanofluid fuel sooting flame. Int J Heat Mass Transfer, 2018, 118: 1080–1089

    Article  Google Scholar 

  9. 9

    Liu G, Liu D. Simultaneous reconstruction of temperature and concentration profiles of soot and metal-oxide nanoparticles in asymmetric nanofluid fuel flames by inverse analysis. J Quantitative Spectr Radiative Transfer, 2018, 219: 174–185

    Article  Google Scholar 

  10. 10

    Liu G, Liu D. Inverse radiation problem of multi-nanoparticles temperature and concentration fields reconstruction in nanofluid fuel flame. Optik, 2019, 181: 81–91

    Article  Google Scholar 

  11. 11

    Liu G N, Liu D. Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera. Chin Phys B, 2018, 27: 054401

    Article  Google Scholar 

  12. 12

    Liu G, Liu D. Treatment of efficiency for temperature and concentration profiles reconstruction of soot and metal-oxide nanoparticles in nanofluid fuel flames. Int J Heat Mass Transfer, 2019, 133: 494–499

    Article  Google Scholar 

  13. 13

    Liu G, Liu D. Direct simultaneous reconstruction for temperature and concentration profiles of soot and metal-oxide nanoparticles in nanofluid fuel flames by a CCD camera. Int J Heat Mass Transfer, 2018, 124: 564–575

    Article  Google Scholar 

  14. 14

    Liu G, Liu D. Noncontact direct temperature and concentration profiles measurement of soot and metal-oxide nanoparticles in optically thin/thick nanofluid fuel flames. Int J Heat Mass Transfer, 2019, 134: 237–249

    Article  Google Scholar 

  15. 15

    Herman G T. Fundamentals of Computerized Tomography: Image Reconstruction from Projection. London: Springer, 2009

    Google Scholar 

  16. 16

    Tikhonov A N. Inverse problems in heat conduction. J Eng Phys, 1975, 29: 816–820

    Article  Google Scholar 

  17. 17

    Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol, 1970, 29: 471–481

    Article  Google Scholar 

  18. 18

    Paige C C, Saunders M A. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw, 1982, 8: 43–71

    MathSciNet  MATH  Article  Google Scholar 

  19. 19

    Landweber L. An iteration formula for Fredholm integral equations of the first kind. Am J Math, 1951, 73: 615–624

    MathSciNet  MATH  Article  Google Scholar 

  20. 20

    Dempster A. Maximum likelihood from incomplete data via the EM algorithm. J Roy Statist Soc Ser B, 1977, 39: 1–38

    MathSciNet  MATH  Google Scholar 

  21. 21

    Hudson H M, Larkin R S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag, 1994, 13: 601–609

    Article  Google Scholar 

  22. 22

    Liu F, Thomson K A, Smallwood G J. Soot temperature and volume fraction retrieval from spectrally resolved flame emission measurement in laminar axisymmetric coflow diffusion flames: Effect of self-absorption. Combust Flame, 2013, 160: 1693–1705

    Article  Google Scholar 

  23. 23

    Ayrancı I, Vaillon R, Selçuk N, et al. Determination of soot temperature, volume fraction and refractive index from flame emission spectrometry. J Quantitative Spectr Radiative Transfer, 2007, 104: 266–276

    Article  Google Scholar 

  24. 24

    Sun Y P, Lou C, Zhou H C. Estimating soot volume fraction and temperature in flames using stochastic particle swarm optimization algorithm. Int J Heat Mass Transfer, 2011, 54: 217–224

    MATH  Article  Google Scholar 

  25. 25

    Liu G, Liu D. Effects of self-absorption on simultaneous estimation of temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames using a spectrometer. J Quantitative Spectr Radiative Transfer, 2018, 212: 149–159

    Article  Google Scholar 

  26. 26

    Liu G, Liu D. On the treatment of self-absorption for temperature and concentration profiles reconstruction accuracy for soot and metal-oxide nanoparticles in nanofluid fuel flame using a CCD camera. Optik, 2018, 164: 114–125

    MathSciNet  Article  Google Scholar 

  27. 27

    Liu G, Liu D. Influence of self-absorption on reconstruction accuracy for temperature and concentration profiles of soot and metal-oxide nanoparticles in asymmetric nanofluid fuel flames. Optik, 2019, 178: 740–751

    Article  Google Scholar 

  28. 28

    Modest M F. Radiative Heat Transfer. Amsterdam, Boston: Academic Press, 2003

    Google Scholar 

  29. 29

    Liu D, Huang Q X, Wang F, et al. Simultaneous measurement of three-dimensional soot temperature and volume fraction fields in axisymmetric or asymmetric small unconfined flames with CCD cameras. J Heat Transfer, 2010, 132: 061202

    Article  Google Scholar 

  30. 30

    Liu D, Yan J H, Wang F, et al. Simultaneous experimental reconstruction of three-dimensional flame soot temperature and volume fraction distributions. Acta Phys Sin, 2011, 60: 060701

    Google Scholar 

  31. 31

    Köylü Ü Ö, McEnally C S, Rosner D E, et al. Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique. Combust Flame, 1997, 110: 494–507

    Article  Google Scholar 

  32. 32

    Xu Z, Zhao H, Chen X, et al. Multi-parameter measurements of laminar sooting flames using thermophoretic sampling technique. Combust Flame, 2017, 180: 158–166

    Article  Google Scholar 

  33. 33

    Xu Z, Zhao H. Simultaneous measurement of internal and external properties of nanoparticles in flame based on thermophoresis. Combust Flame, 2015, 162: 2200–2213

    Article  Google Scholar 

  34. 34

    Zhou H C, Han S D, Sheng F, et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: Numerical studies. J Quantitative Spectr Radiative Transfer, 2002, 72: 361–383

    Article  Google Scholar 

  35. 35

    Daun K J, Thomson K A, Liu F, et al. Deconvolution of axisymmetric flame properties using Tikhonov regularization. Appl Opt, 2006, 45: 4638–4646

    Article  Google Scholar 

  36. 36

    Daun K J. Infrared species limited data tomography through Tikhonov reconstruction. J Quantitative Spectr Radiative Transfer, 2010, 111: 105–115

    Article  Google Scholar 

  37. 37

    Daun K J, Grauer S J, Hadwin P J. Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information. J Quantitative Spectr Radiative Transfer, 2016, 172: 58–74

    Article  Google Scholar 

  38. 38

    Park Y, Reichel L, Rodriguez G, et al. Parameter determination for Tikhonov regularization problems in general form. J Comput Appl Math, 2018, 343: 12–25

    MathSciNet  MATH  Article  Google Scholar 

  39. 39

    Liu D, Wang F, Cen K, et al. Noncontact temperature measurement by means of CCD cameras in a participating medium. Opt Lett, 2008, 33: 422–424

    Article  Google Scholar 

  40. 40

    Liu D, Yan J, Cen K. On the treatment of non-optimal regularization parameter influence on temperature distribution reconstruction accuracy in participating medium. Int J Heat Mass Transfer, 2012, 55: 1553–1560

    MATH  Article  Google Scholar 

  41. 41

    Niu C Y, Qi H, Huang X, et al. Simultaneous reconstruction of temperature distribution and radiative properties in participating media using a hybrid LSQR-PSO algorithm. Chin Phys B, 2015, 24: 114401

    Article  Google Scholar 

  42. 42

    Herman G T, Lent A, Lutz P H. Relaxation methods for image reconstruction. Commun ACM, 1978, 21: 152–158

    MathSciNet  MATH  Article  Google Scholar 

  43. 43

    Rossberg A, Funke H. Determining the radial pair distribution function from X-ray absorption spectra by use of the Landweber iteration method. J Synchrotron Rad, 2010, 17: 280–288

    Article  Google Scholar 

  44. 44

    Terzija N, Davidson J L, Garcia-Stewart C A, et al. Image optimization for chemical species tomography with an irregular and sparse beam array. Meas Sci Technol, 2008, 19: 094007

    Article  Google Scholar 

  45. 45

    Yang W Q, Spink D M, York T A, et al. An image-reconstruction algorithm based on Landweber’s iteration method for electrical-capacitance tomography. Meas Sci Technol, 1999, 10: 1065–1069

    Article  Google Scholar 

  46. 46

    Shepp L A, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag, 1982, 1: 113–122

    Article  Google Scholar 

  47. 47

    Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comp Assisted Tomography, 1984, 8: 306–316

    Google Scholar 

  48. 48

    Gaitanis A, Kontaxakis G, Spyrou G, et al. PET image reconstruction: A stopping rule for the MLEM algorithm based on properties of the updating coefficients. Computized Med Imag Graphics, 2010, 34: 131–141

    Article  Google Scholar 

  49. 49

    Verkruysse W, Todd L A. Novel algorithm for tomographic reconstruction of atmospheric chemicals with sparse sampling. Environ Sci Technol, 2005, 39: 2247–2254

    Article  Google Scholar 

  50. 50

    Dey J, King M A. Theoretical and numerical study of MLEM and OSEM reconstruction algorithms for motion correction in emission tomography. IEEE Trans Nucl Sci, 2009, 56: 2739–2749

    Article  Google Scholar 

  51. 51

    Chang H, Charalampopoulos T T. Determination of the wavelength dependence of refractive indices of flame soot. Proc R Soc Lond A Math Phys Sci, 1990, 430: 577–591

    Google Scholar 

  52. 52

    Querry M R. Optical Constants. Contractor Report. Aberdeen Proving Ground: US Army Chemical Research, Development and Engineering Center (CRDC), 1985. 39

  53. 53

    Yu T, Cai W. Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy. Appl Opt, 2017, 56: 2183–2194

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to WeiWei Cai.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51 706141 and 51976122).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shui, C., Liu, H. & Cai, W. Benchmark evaluation of tomographic algorithms for simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in non-uniform flames. Sci. China Technol. Sci. (2020). https://doi.org/10.1007/s11431-019-1507-6

Download citation

  • inverse analysis
  • algorithms
  • temperature field
  • soot and metal-oxide volume fraction
  • non-uniform nanofluid flame