A moment-based stochastic edge-based smoothed finite element method for electromagnetic forming process

Abstract

In this paper, a novel stochastic method named as the moment-based stochastic edge-based finite element method (MSES-FEM) is proposed to deal with the uncertain electromagnetic problems. First, electromagnetic and mechanical field are formulated by smoothed Galerkin Weak Form under edge-based smoothed finite element method (ES-FEM) scheme. The moment analysis is then applied to obtain the first four moments of the responses and to observe the effects of each random variable on electromagnetic field responses. The maximum entropy theory is employed to calculate the probability density functions (PDFs) of the responses. A quasi-static electromagnetic problem and a practical electromagnetic forming problem (EMF) are performed. The proposed method successfully solves stochastic electromagnetic forming analysis under the uncertain parameters. Numerical results obtained by the proposed MSES-FEM are quite satisfactory with the ones by the Monte Carlo simulation (MCS).

This is a preview of subscription content, log in to check access.

References

  1. 1

    Paese E, Geier M, Homrich R P, et al. A coupled electric-magnetic numerical procedure for determining the electromagnetic force from the interaction of thin metal sheets and spiral coils in the electromagnetic forming process. Appl Math Model, 2015, 39: 309–321

    MathSciNet  Article  Google Scholar 

  2. 2

    Oliveira D A, Worswick M J, Finn M, et al. Electromagnetic forming of aluminum alloy sheet: Free-form and cavity fill experiments and model. J Mater Processing Tech, 2005, 170: 350–362

    Article  Google Scholar 

  3. 3

    Fenton G K, Daehn G S. Modeling of electromagnetically formed sheet metal. J Mater Processing Tech, 1998, 75: 6–16

    Article  Google Scholar 

  4. 4

    Li S, Cui X, Feng H, et al. An electromagnetic forming analysis modelling using nodal integration axisymmetric thin shell. J Mater Processing Tech, 2017, 244: 62–72

    Article  Google Scholar 

  5. 5

    Deng J H, Yu H P, Li C F. Numerical and experimental investigation of electromagnetic riveting. Mater Sci Eng-A, 2009, 499: 242–247

    Article  Google Scholar 

  6. 6

    Cui J, Qi L, Jiang H, et al. Numerical and experimental investigations in electromagnetic riveting with different rivet dies. Int J Mater Form, 2018, 11: 839–853

    Article  Google Scholar 

  7. 7

    Nassiri A, Kinsey B, Chini G. Shear instability of plastically-deforming metals in high-velocity impact welding. J Mech Phys Solids, 2016, 95: 351–373

    MathSciNet  Article  Google Scholar 

  8. 8

    Southwell R. Relaxation methods in theoretical physics. Phys Today, 1957, 10: 30

    Article  Google Scholar 

  9. 9

    Wang B, Wang R X, Wu Y. The Young’s moduli prediction of random distributed short-fiber-reinforced polypropylene foams using finite element method. Sci China Ser E-Tech Sci, 2009, 52: 72–78

    MathSciNet  Article  Google Scholar 

  10. 10

    Zhang J, Li H M, Luo Y L, et al. Performance calculation and improved model research of direct-drive permanent magnet generator based on FEM. Sci China Tech Sci, 2012, 55: 2338–2345

    Article  Google Scholar 

  11. 11

    Boccaccio A, Ballini A, Pappalettere C, et al. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci, 2011, 7: 112–132

    Article  Google Scholar 

  12. 12

    Zhang X F, Pandey M D, Zhang Y M. A numerical method for structural uncertainty response computation. Sci China Tech Sci, 2011, 54: 3347–3357

    MATH  Article  Google Scholar 

  13. 13

    Feng S Z, Han X. A novel multi-grid based reanalysis approach for efficient prediction of fatigue crack propagation. Comput Methods Appl Mech Eng, 2019, 353: 107–122

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Feng S Z, Bordas S P A, Han X, et al. A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics. Acta Mech, 2019, 230: 2385–2398

    MathSciNet  MATH  Article  Google Scholar 

  15. 15

    Feng S Z, Li W. An accurate and efficient algorithm for the simulation of fatigue crack growth based on XFEM and combined approximations. Appl Math Model, 2018, 55: 600–615

    MathSciNet  MATH  Article  Google Scholar 

  16. 16

    Liu G R, Nguyen T T, Dai K Y, et al. Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Meth Engng, 2007, 71: 902–930

    MathSciNet  MATH  Article  Google Scholar 

  17. 17

    Liu G R, Dai K Y, Nguyen T T. A smoothed finite element method for mechanics problems. Comput Mech, 2007, 39: 859–877

    MATH  Article  Google Scholar 

  18. 18

    Nguyen-Thoi T, Phung-Van P, Nguyen-Hoang S, et al. A smoothed coupled NS/nES-FEM for dynamic analysis of 2D fluid-solid interaction problems. Appl Math Computation, 2014, 232: 324–346

    MathSciNet  MATH  Article  Google Scholar 

  19. 19

    Nguyen-Thoi T, Vu-Do H C, Rabczuk T, et al. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetra-hedral meshes. Comput Methods Appl Mech Eng, 2010, 199: 3005–3027

    MATH  Article  Google Scholar 

  20. 20

    Yang T J, Cui X Y. A random field model based on nodal integration domain for stochastic analysis of heat transfer problems. Int J Thermal Sci, 2017, 122: 231–247

    Article  Google Scholar 

  21. 21

    Li S, Cui X. An edge-based smoothed finite element method for nonlinear magnetostatic and eddy current analysis. Appl Math Model, 2018, 62: 287–302

    MathSciNet  MATH  Article  Google Scholar 

  22. 22

    Liu G R, Nguyen-Thoi T, Lam K Y. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib, 2009, 320: 1100–1130

    Article  Google Scholar 

  23. 23

    Chen J S, Wu C T, Yoon S, et al. A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Meth Engng, 2001, 50: 435–466

    MATH  Article  Google Scholar 

  24. 24

    Cui X Y, Li G Y. Metal forming analysis using the edge-based smoothed finite element method. Finite Elem Anal Des, 2013, 63: 33–41

    MathSciNet  MATH  Article  Google Scholar 

  25. 25

    Nguyen-Thoi T, Liu G R, Vu-Do H C, et al. An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh. Comput Mech, 2009, 45: 23–44

    MathSciNet  MATH  Article  Google Scholar 

  26. 26

    Nguyen-Xuan H, Liu G R, Bordas S, et al. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Comput Methods Appl Mech Eng, 2013, 253: 252–273

    MathSciNet  MATH  Article  Google Scholar 

  27. 27

    Nguyen-Xuan H, Nguyen-Hoang S, Rabczuk T, et al. A polytree-based adaptive approach to limit analysis of cracked structures. Comput Methods Appl Mech Eng, 2017, 313: 1006–1039

    MathSciNet  MATH  Article  Google Scholar 

  28. 28

    Feng S Z, Cui X Y, Li G Y. Analysis of transient thermo-elastic problems using edge-based smoothed finite element method. Int J Thermal Sci, 2013, 65: 127–135

    Article  Google Scholar 

  29. 29

    Li S, Cui X, Li G. Multi-physics analysis of electromagnetic forming process using an edge-based smoothed finite element method. Int J Mech Sci, 2017, 134: 244–252

    Article  Google Scholar 

  30. 30

    Wang G, Cui X Y, Feng H, et al. A stable node-based smoothed finite element method for acoustic problems. Comput Methods Appl Mech Eng, 2015, 297: 348–370

    MathSciNet  MATH  Article  Google Scholar 

  31. 31

    Kang Z, Cheng G D. Structural robust design based on perturbation stochastic finite element method. Chin J Comput Mech, 2006, 23: 129–135

    Google Scholar 

  32. 32

    Liu G R, Zeng W, Nguyen-Xuan H. Generalized stochastic cell-based smoothed finite element method (GS_CS-FEM) for solid mechanics. Finite Elem Anal Des, 2013, 63: 51–61

    MathSciNet  MATH  Article  Google Scholar 

  33. 33

    Xia B, Yu D, Liu J. Transformed perturbation stochastic finite element method for static response analysis of stochastic structures. Finite Elem Anal Des, 2014, 79: 9–21

    MathSciNet  Article  Google Scholar 

  34. 34

    Long X Y, Jiang C, Han X, et al. Stochastic response analysis of the scaled boundary finite element method and application to probabilistic fracture mechanics. Comput Struct, 2015, 153: 185–200

    Article  Google Scholar 

  35. 35

    Gong C H, Zeng G Q, Ge L Q, et al. Minimum detectable activity for NaI(Tl) airborne γ-ray spectrometry based on Monte Carlo simulation. Sci China Tech Sci, 2014, 57: 1840–1845

    Article  Google Scholar 

  36. 36

    Papadrakakis M, Papadopoulos V. Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation. Comput Methods Appl Mech Eng, 1996, 134: 325–340

    MathSciNet  MATH  Article  Google Scholar 

  37. 37

    Gittelson C J, Könnö J, Schwab C, et al. The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem. Numer Math, 2013, 125: 347–386

    MathSciNet  MATH  Article  Google Scholar 

  38. 38

    Soize C. Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices. Int J Numer Meth Engng, 2008, 76: 1583–1611

    MathSciNet  MATH  Article  Google Scholar 

  39. 39

    Tagliani A. On the existence of maximum entropy distributions with four and more assigned moments. Probab Eng Mech, 1990, 5: 167–170

    Article  Google Scholar 

  40. 40

    Fujiwara K, Nakata T. Results for benchmark problem 7 (asymmetrical conductor with a hole). COMPEL, 1990, 9: 137–154

    Article  Google Scholar 

  41. 41

    Cui X, Mo J, Li J, et al. Effect of second current pulse and different algorithms on simulation accuracy for electromagnetic sheet forming. Int J Adv Manuf Technol, 2013, 68: 1137–1146

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to XiangYang Cui.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB1002704), the Hunan Provincial Innovation Foundation for Postgraduate of China (Grant No. CX2018B202), the National National Science Foundation of China (Grant No. 11872177), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621004).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wang, B., Li, S. et al. A moment-based stochastic edge-based smoothed finite element method for electromagnetic forming process. Sci. China Technol. Sci. (2020). https://doi.org/10.1007/s11431-019-1489-2

Download citation

Keywords

  • MSES-FEM
  • electromagnetic forming problem
  • the moment analysis
  • the maximum entropy theory
  • probability density function