Skip to main content
Log in

Chemo-mechanical coupling effect in the high-temperature oxidation of metal materials: A review

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The metal materials are susceptible to be oxidized when they are exposed to the complex and harsh environments, especially at the elevated temperature. The development of corresponding chemo-mechanical coupling theory is indispensable in theoretically and numerically predicting the material properties reduction and failures due to the oxidation. In this paper, we review the historical sketch of the coupling theory of chemical reactions and mechanics in the high-temperature oxidation of metal materials. The oxidation results in the stress generation while the generated stress in turn affects the chemical reaction rate and the diffusion process of the reactants. It is therefore a complex chemo-mechanical coupling problem. This review begins with the discussion of the diffusion-controlled oxidation, and then discusses the stress-dependent diffussion during the oxidation and the oxide growth induced stress, and ends with the discussion of interaction between chemical reactions and stress. This review of chemo-mechanical coupling literature is not exhaustive; we review much of the fundamental literature and draw comparisons of coupling theory development in the filed of metal oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedworth R, Pilling N. The oxidation of metals at high temperatures. J Inst Met, 1923, 29: 529–582

    Google Scholar 

  2. Young E W A. The oxygen partial pressure dependence of the defect structure of chromium(III) oxide. J Electrochem Soc, 1987, 134: 2257–2260

    Article  Google Scholar 

  3. Atkinson A. Transport processes during the growth of oxide films at elevated temperature. Rev Mod Phys, 1985, 57: 437–470

    Article  Google Scholar 

  4. Atkinson A, Taylor R I. The diffusion of 63Ni along grain boundaries in nickel oxide. Philos Mag A, 1981, 43: 979–998

    Article  Google Scholar 

  5. Tsai S C, Huntz A M, Dolin C. Growth mechanism of Cr2O3 scales: Oxygen and chromium diffusion, oxidation kinetics and effect of yttrium. Mater Sci Eng-A, 1996, 212: 6–13

    Article  Google Scholar 

  6. Rhines F N, Wolf J S. The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel. Metal Trans, 1970, 1: 1701–1710

    Article  Google Scholar 

  7. Sequeira C A C, Amaral L. Role of Kirkendall effect in diffusion processes in solids. Trans Nonferrous Met Soc China, 2014, 24: 1–11

    Article  Google Scholar 

  8. Kofstad P. Nonstoichiometry, Electrical Conductivity and Diffusion in Binary Metal Oxides. New York: Wiley, 1972

    Google Scholar 

  9. O’Keeffe M, Moore W J. Diffusion of oxygen in single crystals of nickel oxide. J Phys Chem, 1961, 65: 1438–1439

    Article  Google Scholar 

  10. Wagner C. Contribution to the theory of formation of oxidation films. Z Phys Chem. B, 1933, 21: 25

    Google Scholar 

  11. Tammann G. Über Anlauffarben von metallen. Z Anorg Allg Chem, 1920, 111: 78–89

    Article  Google Scholar 

  12. Li J C M, Oriani R A, Darken L S. The thermodynamics of stressed solids. Z für Physikalische Chem, 1966, 49: 271–290

    Article  Google Scholar 

  13. Koehler J S. Diffusion of lattice defects in a stress field. Phys Rev, 1969, 181: 1015–1019

    Article  Google Scholar 

  14. Johnson H. Defect transport in heterogeneous stress fields. Scripta Metall, 1970, 4: 771–775

    Article  Google Scholar 

  15. Philibert J. Diffusion and stresses. Defect Diffusion Forum, 1996, 129–130: 3–8

    Article  Google Scholar 

  16. Aziz M J. Pressure and stress effects on diffusion in Si. Defect Diffusion Forum, 1997, 153–155: 1–10

    Article  Google Scholar 

  17. Olmsted D L, Phillips R, Curtin W A. Modelling diffusion in crystals under high internal stress gradients. Model Simul Mater Sci Eng, 2004, 12: 781–797

    Article  Google Scholar 

  18. Li J C M, Nolfi Jr. F V, Johnson C A. Diffusional equilibrium of substitutional atoms in a stressed solid. Acta Metall, 1971, 19: 749–752

    Article  Google Scholar 

  19. Larché F C, Cahn J W. Overview no. 41 the interactions of composition and stress in crystalline solids. Acta Metall, 1985, 33: 331–357

    Article  Google Scholar 

  20. Larché F, Cahn J W. A linear theory of thermochemical equilibrium of solids under stress. Acta Metall, 1973, 21: 1051–1063

    Article  Google Scholar 

  21. Callen H B. Thermodynamics. New York: Wiley, 1960

    MATH  Google Scholar 

  22. Denton A R, Ashcroft N W. Vegard’s law. Phys Rev A, 1991, 43: 3161–3164

    Article  Google Scholar 

  23. Larché F, Cahn J W. A nonlinear theory of thermochemical equilibrium of solids under stress. Acta Metall, 1978, 26: 53–60

    Article  Google Scholar 

  24. Johnson W C, Schmalzried H. Phenomenological thermodynamic treatment of elastically stressed ionic crystals. J Am Ceramic Soc, 1993, 76: 1713–1719

    Article  Google Scholar 

  25. Johnson W C. Thermodynamic equilibria in two-phase, elastically stressed ionic crystals. J Am Ceramic Soc, 1994, 77: 1581–1591

    Article  Google Scholar 

  26. Johnson W C, Huh J Y. Thermodynamics of stress-induced interstitial redistribution in body-centered cubic metals. Metall Mat Trans A, 2003, 34: 2819–2825

    Article  Google Scholar 

  27. Krishnamurthy R, Srolovitz D J. A general solution for two-dimensional stress distributions in thin films. J Appl Mech, 2004, 71: 691–696

    Article  MATH  Google Scholar 

  28. Krishnamurthy R, Sheldon B W. Stresses due to oxygen potential gradients in non-stoichiometric oxides. Acta Mater, 2004, 52: 1807–1822

    Article  Google Scholar 

  29. Dimos D, Wolfenstine J, Kohlstedt D L. Kinetic demixing and decomposition of multicomponent oxides due to a nonhydrostatic stress. Acta Metall, 1988, 36: 1543–1552

    Article  Google Scholar 

  30. Greenberg M, Wachtel E, Lubomirsky I, et al. Elasticity of solids with a large concentration of point defects. Adv Funct Mater, 2006, 16: 48–52

    Article  Google Scholar 

  31. Haase R. Thermodynamics of Irreversible Processes. Reading MA: Addison-Wesley, 1969

    Google Scholar 

  32. Wu C H. The role of Eshelby stress in composition-generated and stress-assisted diffusion. J Mech Phys Solids, 2001, 49: 1771–1794

    Article  MATH  Google Scholar 

  33. Evans U R. The mechanism of oxidation and tarnishing. Trans Electrochem Soc, 1947, 91: 547–572

    Article  Google Scholar 

  34. Stringer J. Stress generation and relief in growingoxide films. Corrosion Sci, 1970, 10: 513–543

    Article  Google Scholar 

  35. Schütze M. Protective Oxide Scales and Their Breakdown. Chichester: John & Wiley Sons, 1997

    Google Scholar 

  36. Bradhurst D H, Heuer P M. The influence of oxide stress on the breakaway oxidation of zircaloy-2. J Nucl Mater, 1970, 37: 35–47

    Article  Google Scholar 

  37. Ueno T. Stresses in bi-layered NiO scales. Trans JIM, 1974, 15: 167–172

    Article  Google Scholar 

  38. Mitchell T E, Voss D A, Butler E P. The observation of stress effects during the high temperature oxidation of iron. J Mater Sci, 1982, 17: 1825–1833

    Article  Google Scholar 

  39. Forest C, Davidson J H. Some observations on the effects of sulfur and active elements on the oxidation of Fe-Cr-Al alloys. Oxid Met, 1995, 43: 479–490

    Article  Google Scholar 

  40. Evans H E, Huntz A M. Methods of measuring oxidation growth stresses. Mater at High Temp, 1994, 12: 111–117

    Article  Google Scholar 

  41. Lipkin D M, Clarke D R. Measurement of the stress in oxide scales formed by oxidation of alumina-forming alloys. Oxid Met, 1996, 45: 267–280

    Article  Google Scholar 

  42. Li M, Li T, Gao W, et al. Determination of oxide growth stress by a novel deflection method. Oxidation Met, 1999, 51: 333–351

    Article  Google Scholar 

  43. Huntz A M. Stresses in NiO, Cr2O3 and Al2O3 oxide scales. Mater Sci Eng-A, 1995, 201: 211–228

    Article  Google Scholar 

  44. Li M, Qian Y, Xin L. Volume ratio of an oxide to the metal (in Chinese). Corros Sci Prot Tech, 1999, 11: 284–289

    Google Scholar 

  45. Speight M V, Harris J E. The generation of stresses in oxide films growing by cation diffusion. Acta Metall, 1978, 26: 1043–1045

    Article  Google Scholar 

  46. Evans H E. The role of oxide grain boundaries in the development of growth stresses during oxidation. Corrosion Sci, 1983, 23: 495–506

    Article  MathSciNet  Google Scholar 

  47. Srolovitz D J, Ramanarayanan T A. An elastic analysis of growth stresses during oxidation. Oxid Met, 1984, 22: 133–146

    Article  Google Scholar 

  48. Tolpygo V K, Dryden J R, Clarke D R. Determination of the growth stress and strain in α-Al2O3 scales during the oxidation of Fe-22Cr-4.8Al-0.3Y alloy. Acta Mater, 1998, 46: 927–937

    Article  Google Scholar 

  49. Tolpygo V K, Clarke D R. Competition between stress generation and relaxation during oxidation of an Fe-Cr-Al-Y alloy. Oxidation Met, 1998, 49: 187–212

    Article  Google Scholar 

  50. Clarke D R. The lateral growth strain accompanying the formation of a thermally grown oxide. Acta Mater, 2003, 51: 1393–1407

    Article  Google Scholar 

  51. Maharjan S, Zhang X C, Wang Z D. Analytical modeling of stress and strain of symmetrically oxidized metal. J Appl Phys, 2012, 112: 033514

    Article  Google Scholar 

  52. Zhang Y, Zhang X, Tu S T, et al. Analytical modeling on stress assisted oxidation and its effect on creep response of metals. Oxid Met, 2014, 82: 311–330

    Article  Google Scholar 

  53. Maharjan S, Zhang X C, Xuan F Z, et al. Residual stresses within oxide layers due to lateral growth strain and creep strain: Analytical modeling. J Appl Phys, 2011, 110: 063511

    Article  Google Scholar 

  54. Dong X, Feng X, Hwang K C. Oxidation stress evolution and relaxation of oxide film/metal substrate system. J Appl Phys, 2012, 112: 023502

    Article  Google Scholar 

  55. Grosseau-Poussard J L, Panicaud B, Ben Afia S. Modelling of stresses evolution in growing thermal oxides on metals. A methodology to identify the corresponding mechanical parameters. Comput Mater Sci, 2013, 71: 47–55

    Google Scholar 

  56. Panicaud B, Grosseau-Poussard J L, Dinhut J F. On the growth strain origin and stress evolution prediction during oxidation of metals. Appl Surf Sci, 2006, 252: 5700–5713

    Article  Google Scholar 

  57. Maharjan S, Zhang X, Wang Z. Effect of oxide growth strain in residual stresses for the deflection test of single surface oxidation of alloys. Oxid Met, 2012, 77: 93–106

    Article  Google Scholar 

  58. Dong X, Fang X, Feng X, et al. Diffusion and stress coupling effect during oxidation at high temperature. J Am Ceram Soc, 2013, 96: 44–46

    Article  Google Scholar 

  59. Panicaud B, Grosseau-Poussard J L, Retraint D, et al. On the mechanical effects of a nanocrystallisation treatment for ZrO2 oxide films growing on a zirconium alloy. Corrosion Sci, 2013, 68: 263–274

    Article  Google Scholar 

  60. Panicaud B, Grosseau-Poussard J L, Kemdehoundja M, et al. Mechanical features optimization for α-Cr2O3 oxide films growing on alloy NiCr30. Comp Mater Sci, 2009, 46: 42–48

    Article  Google Scholar 

  61. Panicaud B, Grosseau-Poussard J L, Girault P, et al. Comparison of growth stress measurements with modelling in thin iron oxide films. Appl Surf Sci, 2006, 252: 8414–8420

    Article  Google Scholar 

  62. Panicaud B, Grosseau-Poussard J L, Dinhut J F. General approach on the growth strain versus viscoplastic relaxation during oxidation of metals. Comput Mater Sci, 2008, 42: 286–294

    Article  Google Scholar 

  63. Zhang G, Wang H, Shen S. A chemomechanical coupling model for stress analysis of oxide scale growing between ceramic coating and substrate. Acta Mech, 2017, 228: 3173–3183

    Article  MathSciNet  Google Scholar 

  64. Suo Y, Zhang Z, Yang X. Residual stress analysis with stress-dependent growth rate and creep deformation during oxidation. J Mater Res, 2016, 31: 2384–2391

    Article  Google Scholar 

  65. Huntz A M, Calvarin Amiri G, Evans H E, et al. Comparison of oxidation-growth stresses in NiO film measured by deflection and calculated using creep analysis or finite-element modeling. Oxidation Met, 2002, 57: 499–521

    Article  Google Scholar 

  66. Favergeon J, Montesin T, Bertrand G. Mechano-chemical aspects of high temperature oxidation: A mesoscopic model applied to zirconium alloys. Oxid Met, 2005, 64: 253–279

    Article  Google Scholar 

  67. Parise M, Sicardy O, Cailletaud G. Modelling of the mechanical behavior of the metal-oxide system during Zr alloy oxidation. J Nucl Mater, 1998, 256: 35–46

    Article  Google Scholar 

  68. Salles-Desvignes I, Montesin T, Valot C, et al. Near-coincidence lattice method for the determination of epitaxy strains during oxidation of metals. Acta Mater, 2000, 48: 1505–1515

    Article  Google Scholar 

  69. Dong X, Fang X, Feng X, et al. Oxidation at high temperature under three-point bending considering stress-diffusion coupling effects. Oxid Met, 2016, 86: 125–133

    Article  Google Scholar 

  70. Qi H Y, Liang X B, Li S L, et al. High-temperature oxidation behavior of DZ125 Ni-based superalloy under tensile stress. Rare Met, 2016, 13

  71. Swaminathan N, Qu J, Sun Y. An electrochemomechanical theory of defects in ionic solids. I. Theory. Philos Mag, 2007, 87: 1705–1721

    Article  Google Scholar 

  72. Li J C M. Chemical potential for diffusion in a stressed solid. Scripta Metall, 1981, 15: 21–28

    Article  Google Scholar 

  73. Larcht’e F C, Cahn J. The effect of self-stress on diffusion in solids. Acta Metall, 1982, 30: 1835–1845

    Article  Google Scholar 

  74. Larche F C, Cahn J W. The interactions of composition and stress in crystalline solids. J Res Natl Bur Stan, 1984, 89: 467–500

    Article  Google Scholar 

  75. Sallès-Desvignes I, Bertrand G, Montesin T, et al. Coupling between diffusion, stress field and chemical reaction in a metal-gas oxidation. Solid State Phenom, 2000, 72: 9–16

    Article  Google Scholar 

  76. Yang F, Liu B, Fang D. Modeling of growth stress gradient effect on the oxidation rate at high temperature. J Zhejiang Univ Sci A, 2010, 11: 789–793

    Article  Google Scholar 

  77. Yue M, Dong X, Fang X, et al. Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature. J Appl Phys, 2018, 123: 155301

    Article  Google Scholar 

  78. Krishnamurthy R, Srolovitz D J. Stress distributions in growing oxide films. Acta Mater, 2003, 51: 2171–2190

    Article  Google Scholar 

  79. Krishnamurthy R, Srolovitz D J. Stress distributions in growing polycrystalline oxide films. Acta Mater, 2004, 52: 3761–3780

    Article  Google Scholar 

  80. Zhou H, Qu J, Cherkaoui M. Stress-oxidation interaction in selective oxidation of Cr-Fe alloys. Mech Mater, 2010, 42: 63–71

    Article  Google Scholar 

  81. Zhou H, Qu J, Cherkaoui M. Finite element analysis of oxidation induced metal depletion at oxide-metal interface. Comput Mater Sci, 2010, 48: 842–847

    Article  Google Scholar 

  82. Zhou H, Cherkaoui M. A finite element analysis of the reactive element effect in oxidation of chromia-forming alloys. Philos Mag, 2010, 90: 3401–3420

    Article  Google Scholar 

  83. Loeffel K, Anand L. A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int J Plast, 2011, 27: 1409–1431

    Article  MATH  Google Scholar 

  84. Hu S, Shen S. Non-equilibrium thermodynamics and variational principles for fully coupled thermal-mechanical-chemical processes. Acta Mech, 2013, 224: 2895–2910

    Article  MathSciNet  MATH  Google Scholar 

  85. Craig S L. A tour of force. Nature, 2012, 487: 176–177

    Article  Google Scholar 

  86. Liu W, Yu W, Shen S. Chemomechanical analysis for interfacial reactions between γ-TiAl alloy and glass-ceramic coating in micro/nano scale. J Am Ceram Soc, 2018, 101: 5675–5683

    Article  Google Scholar 

  87. Yu P, Shen S. A fully coupled theory and variational principle for thermal-electrical-chemical-mechanical processes. J Appl Mech, 2014, 81: 111005

    Article  Google Scholar 

  88. Suo Y, Shen S. General approach on chemistry and stress coupling effects during oxidation. J Appl Phys, 2013, 114: 164905

    Article  Google Scholar 

  89. Wang H, Suo Y, Shen S. Reaction-diffusion-stress coupling effect in inelastic oxide scale during oxidation. Oxid Met, 2015, 83: 507–519

    Article  Google Scholar 

  90. Wang H, Shen S. A chemomechanical model for stress evolution and distribution in the viscoplastic oxide scale during oxidation. J Appl Mech, 2016, 83: 051008

    Article  Google Scholar 

  91. Chen J, Wang H, Yu P, et al. A finite element implementation of a fully coupled mechanical—Chemical theory. Int J Appl Mech, 2017, 9: 1750040

    Article  Google Scholar 

  92. Chen J, Yu P, Wang H, et al. An ABAQUS implementation of electrochemomechanical theory for mixed ionic electronic conductors. Solid State Ion, 2018, 319: 34–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengPing Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yu, W. & Shen, S. Chemo-mechanical coupling effect in the high-temperature oxidation of metal materials: A review. Sci. China Technol. Sci. 62, 1246–1254 (2019). https://doi.org/10.1007/s11431-018-9500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9500-y

Keywords

Navigation