Skip to main content
Log in

High-throughput experiments facilitate materials innovation: A review

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Since the Material Genome Initiative (MGI) was proposed, high-throughput based technology has been widely employed in various fields of materials science. As a theoretical guide, material informatics has been introduced based on machine learning and data mining and high-throughput computation has been employed for large scale search, narrowing down the scope of the experiment trials. High-throughput materials experiments including synthesis, processing, and characterization technologies have become valuable research tools to pin down the prediction experimentally, enabling the discovery-to-deployment of advances materials more efficiently at a fraction of cost. This review aims to summarize the recent advances of high-throughput materials experiments and introduce briefly the development of materials design based on material genome concept. By selecting representative and classic works in the past years, various high-throughput preparation methods are introduced for different types of material gradient libraries, including metallic, inorganic materials, and polymers. Furthermore, high-throughput characterization approaches are comprehensively discussed, including both their advantages and limitations. Specifically, we focus on high-throughput mass spectrometry to analyze its current status and challenges in the application of catalysts screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holdren J P. Materials Genome Initiative for Global Competitiveness. Report. White House Office of Science and Technology Policy, 2011

    Google Scholar 

  2. Jain A, Ong S P, Hautier G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater, 2013, 1: 011002

    Google Scholar 

  3. Green M L, Choi C L, Hattrick-Simpers J R, et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl Phys Rev, 2017, 4: 011105

    Google Scholar 

  4. Wang H, Wang H, Ding H, et al. Progress in high-throughput materials synthesis and characterization. Sci Technol Rev, 2015, 33: 31–49

    Google Scholar 

  5. Kennedy K, Stefansky T, Davy G, et al. Rapid method for determining ternary-alloy phase diagrams. J Appl Phys, 1965, 36: 3808–3810

    Google Scholar 

  6. Hanak J J. The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J Mater Sci, 1970, 5: 964–971

    Google Scholar 

  7. Thomas R, Moulijn J A, De Beer V H J, et al. Structure/metathesis activity relations of silica supported molybdenum and tungsten oxide. J Mol Catal, 1980, 8: 161–174

    Google Scholar 

  8. Xiang X D, Sun X, Briceño G, et al. A combinatorial approach to materials discovery. Science, 1995, 268: 1738–1740

    Google Scholar 

  9. Danielson E, Golden J H, McFarland E W, et al. A combinatorial approach to the discovery and optimization of luminescent materials. Nature, 1997, 389: 944–948

    Google Scholar 

  10. Merrifield R B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc, 1963, 85: 2149–2154

    Google Scholar 

  11. Orschel M, Klein J, Schmidt H W, et al. Detection of reaction selectivity on catalyst libraries by spatially resolved mass spectrometry. Angew Chem Int Ed, 1999, 38: 2791–2794

    Google Scholar 

  12. Senkan S, Krantz K, Ozturk S, et al. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angew Chem Int Ed, 1999, 38: 2794–2799

    Google Scholar 

  13. Jandeleit B, Schaefer D J, Powers T S, et al. Combinatorial materials science and catalysis. Angew Chem Int Ed, 1999, 38: 2494–2532

    Google Scholar 

  14. Senkan S. Combinatorial heterogeneous catalysis—A new path in an old field. Angew Chem Int Ed, 2001, 40: 312–329

    Google Scholar 

  15. Senkan S M. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394: 350–353

    Google Scholar 

  16. Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite material from a combinatorial library. Science, 1998, 279: 1712–1714

    Google Scholar 

  17. Sun X D, Wang K A, Yoo Y, et al. Solution-phase synthesis of luminescent materials libraries. Adv Mater, 1997, 9: 1046–1049

    Google Scholar 

  18. Zhao J C, Jackson M R, Peluso L A, et al. A diffusion multiple approach for the accelerated design of structural materials. MRS Bull, 2002, 27: 324–329

    Google Scholar 

  19. McDowell D L, Olson G B. Concurrent design of hierarchical materials and structures. Sci Model Simul, 2008, 15: 207–240

    Google Scholar 

  20. Potyrailo R A, Mirsky V M. Combinatorial and high-throughput development of sensing materials: The first 10 years. Chem Rev, 2008, 108: 770–813

    Google Scholar 

  21. de Jong M, Chen W, Angsten T, et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci Data, 2015, 2: 150009

    Google Scholar 

  22. de Jong M, Chen W, Geerlings H, et al. A database to enable discovery and design of piezoelectric materials. Sci Data, 2015, 2: 150053

    Google Scholar 

  23. Ong S P, Wang L, Kang B, et al. Li-Fe-P-O2 phase diagram from first principles calculations. Chem Mater, 2008, 20: 1798–1807

    Google Scholar 

  24. Ong S P, Richards W D, Jain A, et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput Mater Sci, 2013, 68: 314–319

    Google Scholar 

  25. Jain A, Ong S P, Chen W, et al. FireWorks: A dynamic workflow system designed for high-throughput applications. Concurrency Computat-Pract Exper, 2015, 27: 5037–5059

    Google Scholar 

  26. Zhou F, Cococcioni M, Marianetti C A, et al. First-principles prediction of redox potentials in transition-metal compounds with LDA +U. Phys Rev B, 2004, 70: 235121

    Google Scholar 

  27. Wang L, Maxisch T, Ceder G. A first-principles approach to studying the thermal stability of oxide cathode materials. Chem Mater, 2007, 19: 543–552

    Google Scholar 

  28. Ong S P, Jain A, Hautier G, et al. Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations. Electrochem Commun, 2010, 12: 427–430

    Google Scholar 

  29. Adams S, Rao R P. High power lithium ion battery materials by computational design. Phys Status Solidi A, 2011, 208: 1746–1753

    Google Scholar 

  30. Hautier G, Fischer C, Ehrlacher V, et al. Data mined ionic substitutions for the discovery of new compounds. Inorg Chem, 2011, 50: 656–663

    Google Scholar 

  31. Qu X, Jain A, Rajput N N, et al. The Electrolyte Genome project: A big data approach in battery materials discovery. Comput Mater Sci, 2015, 103: 56–67

    Google Scholar 

  32. Persson K A, Waldwick B, Lazic P, et al. Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states. Phys Rev B, 2012, 85: 235438

    Google Scholar 

  33. Singh A K, Zhou L, Shinde A, et al. Electrochemical stability of metastable materials. Chem Mater, 2017, 29: 10159–10167

    Google Scholar 

  34. Ceder G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull, 2010, 35: 693–701

    Google Scholar 

  35. Hautier G, Jain A, Ong S P, et al. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations. Chem Mater, 2011, 23: 3495–3508

    Google Scholar 

  36. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater, 2011, 10: 682–686

    Google Scholar 

  37. Seino Y, Ota T, Takada K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci, 2014, 7: 627–631

    Google Scholar 

  38. Wang Y, Richards W D, Bo S H, et al. Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X =O, S, Se). Chem Mater, 2017, 29: 7475–7482

    Google Scholar 

  39. Greeley J, Jaramillo T F, Bonde J, et al. Computational highthroughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater, 2006, 5: 909–913

    Google Scholar 

  40. Lin L C, Berger A H, Martin R L, et al. In silico screening of carboncapture materials. Nat Mater, 2012, 11: 633–641

    Google Scholar 

  41. Armiento R, Kozinsky B, Fornari M, et al. Screening for high-performance piezoelectrics using high-throughput density functional theory. Phys Rev B, 2011, 84: 014103

    Google Scholar 

  42. Wang S, Wang Z, Setyawan W, et al. Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Phys Rev X, 2011, 1: 021012

    Google Scholar 

  43. Curtarolo S, Setyawan W, Wang S, et al. Aflowlib.Org: A distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci, 2012, 58: 227–235

    Google Scholar 

  44. Xi L, Pan S, Li X, et al. Discovery of high-performance thermoelectric chalcogenides through reliable high-throughput material screening. J Am Chem Soc, 2018, 140: 10785–10793

    Google Scholar 

  45. Raccuglia P, Elbert K C, Adler P D F, et al. Machine-learningassisted materials discovery using failed experiments. Nature, 2016, 533: 73–76

    Google Scholar 

  46. Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542: 115–118

    Google Scholar 

  47. Kusne A G, Keller D, Anderson A, et al. High-throughput determination of structural phase diagram and constituent phases using grendel. Nanotechnology, 2015, 26: 444002

    Google Scholar 

  48. Liu Y, Zhao T, Ju W, et al. Materials discovery and design using machine learning. J Materiomics, 2017, 3: 159–177

    Google Scholar 

  49. Gajewski J, Sadowski T. Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating artificial neural networks and finite element method. Comput Mater Sci, 2014, 82: 114–117

    Google Scholar 

  50. Liu Y, Zhao T, Yang G, et al. The onset temperature (T g) of AsxSe1-x glasses transition prediction: A comparison of topological and regression analysis methods. Comput Mater Sci, 2017, 140: 315–321

    Google Scholar 

  51. Shi S Q, Gao J, Liu Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin Phys B, 2016, 25: 018212

    Google Scholar 

  52. LeSar R. Materials informatics: An emerging technology for materials development. Statistical Anal Data Min, 2009, 1: 372–374

    MathSciNet  Google Scholar 

  53. Kalidindi S R, De Graef M. Materials data science: Current status and future outlook. Annu Rev Mater Res, 2015, 45: 171–193

    Google Scholar 

  54. Meredig B, Agrawal A, Kirklin S, et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B, 2014, 89: 094104

    Google Scholar 

  55. Hattrick-Simpers J R, Gregoire J M, Kusne A G. Perspective: Composition-structure-property mapping in high-throughput experiments: Turning data into knowledge. APL Mater, 2016, 4: 053211

    Google Scholar 

  56. Pilania G, Wang C, Jiang X, et al. Accelerating materials property predictions using machine learning. Sci Rep, 2013, 3: 2810

    Google Scholar 

  57. Rar A, Frafjord J J, Fowlkes J D, et al. PVD synthesis and highthroughput property characterization of Ni-Fe-Cr alloy libraries. Meas Sci Technol, 2005, 16: 46–53

    Google Scholar 

  58. Müller C M, Sologubenko A S, Gerstl S S A, et al. Nanoscale Cu/Ta multilayer deposition by co-sputtering on a rotating substrate. Empirical model and experiment. Surf Coatings Tech, 2016, 302: 284–292

    Google Scholar 

  59. Bahrami A, Álvarez J P, Depablos-Rivera O, et al. Compositional and tribo-mechanical characterization of Ti-Ta coatings prepared by confocal dual magnetron Co-sputtering. Adv Eng Mater, 2018, 20: 1700687

    Google Scholar 

  60. Wang X, Rogalla D, Ludwig A. Influences of W content on the phase transformation properties and the associated stress change in thin film substrate combinations studied by fabrication and characterization of thin film V1–xWxO2 materials libraries. ACS Comb Sci, 2018, 20: 229–236

    Google Scholar 

  61. Voith M, Mardare A I, Hassel A W. Synthesis and characterization of Al-Mg-Zn thin film alloys co-deposited from vapour phase. Phys Status Solidi A, 2013, 210: 1000–1005

    Google Scholar 

  62. Mao S S. High throughput growth and characterization of thin film materials. J Cryst Growth, 2013, 379: 123–130

    Google Scholar 

  63. Löbel R, Thienhaus S, Savan A, et al. Combinatorial fabrication and high-throughput characterization of a Ti-Ni-Cu shape memory thin film composition spread. Mater Sci Eng-A, 2008, 481-482: 151–155

    Google Scholar 

  64. Thienhaus S, Naujoks D, Pfetzing-Micklich J, et al. Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical highthroughput measurements: A case study for the system Ni-Al. ACS Comb Sci, 2014, 16: 686–694

    Google Scholar 

  65. Motemani Y, Khare C, Savan A, et al. Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition. Nanotechnology, 2016, 27: 495604

    Google Scholar 

  66. Xiang X D, Wang G, Zhang X, et al. Individualized pixel synthesis and characterization of combinatorial materials chips. Engineering, 2015, 1: 225–233

    Google Scholar 

  67. Xing H, Zhao B, Wang Y, et al. Rapid construction of Fe-Co-Ni composition-phase map by combinatorial materials chip approach. ACS Comb Sci, 2018, 20: 127–131

    Google Scholar 

  68. Maier W F, Stöwe K, Sieg S. Combinatorial and high-throughput materials science. Angew Chem Int Ed, 2007, 46: 6016–6067

    Google Scholar 

  69. Decker P, Naujoks D, Langenkämper D, et al. High-throughput structural and functional characterization of the thin film materials system Ni-Co-Al. ACS Comb Sci, 2017, 19: 618–624

    Google Scholar 

  70. Cooper J S, McGinn P J. Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode. J Power Sources, 2006, 163: 330–338

    Google Scholar 

  71. Cooper J S, McGinn P J. Combinatorial screening of fuel cell cathode catalyst compositions. Appl Surf Sci, 2007, 254: 662–668

    Google Scholar 

  72. Cooper J S, Jeon M K, McGinn P J. Combinatorial screening of ternary Pt-Ni-Cr catalysts for methanol electro-oxidation. Electrochem Commun, 2008, 10: 1545–1547

    Google Scholar 

  73. Jeon M K, Cooper J S, McGinn P J. Methanol electro-oxidation by a ternary Pt-Ru-Cu catalyst identified by a combinatorial approach. J Power Sources, 2008, 185: 913–916

    Google Scholar 

  74. Zhang Y, McGinn P J. Combinatorial screening for methanol oxidation catalysts in alloys of Pt, Cr, Co and V. J Power Sources, 2012, 206: 29–36

    Google Scholar 

  75. McGinn P J. Combinatorial electrochemistry—Processing and characterization for materials discovery. Mater Discovery, 2015, 1: 38–53

    Google Scholar 

  76. Ocylok S, Weisheit A, Kelbassa I. Functionally graded multi-layers by laser cladding for increased wear and corrosion protection. Phys Procedia, 2010, 5: 359–367

    Google Scholar 

  77. Knoll H, Ocylok S, Weisheit A, et al. Combinatorial alloy design by laser additive manufacturing. steel Res int, 2016, 88: 1600416

    Google Scholar 

  78. Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater, 2016, 117: 371–392

    Google Scholar 

  79. Hebert R J. Viewpoint: Metallurgical aspects of powder bed metal additive manufacturing. J Mater Sci, 2016, 51: 1165–1175

    Google Scholar 

  80. Hofmann D C, Roberts S, Otis R, et al. Developing gradient metal alloys through radial deposition additive manufacturing. Sci Rep, 2014, 4: 5357–5365

    Google Scholar 

  81. Zhao J C, Jackson M R, Peluso L A. Mapping of the Nb-Ti-Si phase diagram using diffusion multiples. Mater Sci Eng-A, 2004, 372: 21–27

    Google Scholar 

  82. Zhao J C, Xu Y, Hartmann U. Measurement of an iso-curie temperature line of a Co-Cr-Mo solid solution by magnetic force microscopy imaging on a diffusion multiple. Adv Eng Mater, 2013, 15: 321–324

    Google Scholar 

  83. Zhao J C, Peluso L A, Jackson M R, et al. Phase diagram of the Nb-Al-Si ternary system. J Alloys Compd, 2003, 360: 183–188

    Google Scholar 

  84. Zhao J C, Jackson M R, Peluso L A. Determination of the Nb-Cr-Si phase diagram using diffusion multiples. Acta Mater, 2003, 51: 6395–6405

    Google Scholar 

  85. Zhao J C. Reliability of the diffusion-multiple approach for phase diagram mapping. J Mater Sci, 2004, 39: 3913–3925

    Google Scholar 

  86. Zhao J C, Jackson M R, Peluso L A. Evaluation of phase relations in the Nb-Cr-Al system at 1000°C using a diffusion-multiple approach. J Phase Equil Diff, 2004, 25: 152–159

    Google Scholar 

  87. Shastry V V, Divya V D, Azeem M A, et al. Combining indentation and diffusion couple techniques for combinatorial discovery of high temperature shape memory alloys. Acta Mater, 2013, 61: 5735–5742

    Google Scholar 

  88. Zhou L, Giri A, Cho K, et al. Mechanical anomaly observed in Ni-Mn-Ga alloys by nanoindentation. Acta Mater, 2016, 118: 54–63

    Google Scholar 

  89. Huang S, Zhang X, Jiang Y, et al. Experimental investigation of Ti-Nb-Co ternary system at 1000°C. Mater Des, 2017, 115: 170–178

    Google Scholar 

  90. Zhao J. Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships. Prog Mater Sci, 2006, 51: 557–631

    Google Scholar 

  91. Zhao J C, Zheng X, Cahill D G. High-throughput diffusion multiples. Mater Today, 2005, 8: 28–37

    Google Scholar 

  92. Milenkovic S, Rahimian M, Sabirov I. A novel high-throughput technique for establishing the solidification-microstructure relationships. Metall Materi Trans B, 2013, 45: 482–488

    Google Scholar 

  93. Weaver J S, Khosravani A, Castillo A, et al. High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Integr Mater Manuf Innov, 2016, 5: 1–20

    Google Scholar 

  94. Chen P C, Liu X, Hedrick J L, et al. Polyelemental nanoparticle libraries. Science, 2016, 352: 1565–1569

    Google Scholar 

  95. Yao Y, Huang Z, Xie P, et al. Carbothermal shock synthesis of highentropy-alloy nanoparticles. Science, 2018, 359: 1489–1494

    Google Scholar 

  96. Fenton J L, Steimle B C, Schaak R E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science, 2018, 360: 513–517

    Google Scholar 

  97. Akinc A, Lynn D M, Anderson D G, et al. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J Am Chem Soc, 2003, 125: 5316–5323

    Google Scholar 

  98. Hao J, Kos P, Zhou K, et al. Rapid synthesis of a lipocationic polyester library via ring-opening polymerization of functional valerolactones for efficacious sirna delivery. J Am Chem Soc, 2015, 137: 9206–9209

    Google Scholar 

  99. Zha Z, Hu Y, Mukerabigwi J F, et al. Thiolactone chemistry-based combinatorial methodology to construct multifunctional polymers for efficacious gene delivery. Bioconjugate Chem, 2018, 29: 23–28

    Google Scholar 

  100. Anderson D G, Peng W, Akinc A, et al. A polymer library approach to suicide gene therapy for cancer. Proc Natl Acad Sci USA, 2004, 101: 16028–16033

    Google Scholar 

  101. Anderson D, Tweedie C, Hossain N, et al. A combinatorial library of photocrosslinkable and degradable materials. Adv Mater, 2006, 18: 2614–2618

    Google Scholar 

  102. Xue H, Zhao Y, Wu H, et al. Multicomponent combinatorial polymerization via the biginelli reaction. J Am Chem Soc, 2016, 138: 8690–8693

    Google Scholar 

  103. Cosson S, Danial M, Saint-Amans J R, et al. Accelerated combinatorial high throughput star polymer synthesis via a rapid one-pot sequential aqueous raft (rosa-raft) polymerization scheme. Macromol Rapid Commun, 2017, 38: 1600780

    Google Scholar 

  104. Potyrailo R A, Wroczynski R J, Pickett J E, et al. High-throughput fabrication, performance testing, and characterization of one-dimensional libraries of polymeric compositions. Macromol Rapid Commun, 2003, 24: 123–130

    Google Scholar 

  105. Gallant F M, Bruck H A, Kota A K. Fabrication of particle-reinforced polymers with continuous gradient architectures using twin screw extrusion process. J Composite Mater, 2004, 38: 1873–1893

    Google Scholar 

  106. Carson Meredith J, Karim A, Amis E J. Combinatorial methods for investigations in polymer materials science. MRS Bull, 2002, 27: 330–335

    Google Scholar 

  107. Stafford C M, Roskov K E, Epps Iii T H, et al. Generating thickness gradients of thin polymer films via flow coating. Rev Sci Instruments, 2006, 77: 023908

    Google Scholar 

  108. Meredith J C, Smith A P, Karim A, et al. Combinatorial materials science for polymer thin-film dewetting. Macromolecules, 2000, 33: 9747–9756

    Google Scholar 

  109. Kelly J Y, Albert J N L, Howarter J A, et al. Investigation of thermally responsive block copolymer thin film morphologies using gradients. ACS Appl Mater Interfaces, 2010, 2: 3241–3248

    Google Scholar 

  110. Ding Y, Qi H J, Alvine K J, et al. Stability and surface topography evolution in nanoimprinted polymer patterns under a thermal gradient. Macromolecules, 2010, 43: 8191–8201

    Google Scholar 

  111. Smith A P, Sehgal A, Douglas J F, et al. Combinatorial mapping of surface energy effects on diblock copolymer thin film ordering. Macromol Rapid Commun, 2003, 24: 131–135

    Google Scholar 

  112. Lawrence N T, Kehoe J M, Hoffman D B, et al. Combinatorial mapping of substrate step edge effects on diblock copolymer thin film morphology and orientation. Macromol Rapid Commun, 2010, 31: 1003–1009

    Google Scholar 

  113. Briceno G, Chang H, Sun X, et al. A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science, 1995, 270: 273–275

    Google Scholar 

  114. Sun X D, Gao C, Wang J, et al. Identification and optimization of advanced phosphors using combinatorial libraries. Appl Phys Lett, 1997, 70: 3353–3355

    Google Scholar 

  115. Chang H, Gao C, Takeuchi I, et al. Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications. Appl Phys Lett, 1998, 72: 2185–2187

    Google Scholar 

  116. Mao S S. High throughput combinatorial screening of semiconductor materials. Appl Phys A, 2011, 105: 283–288

    Google Scholar 

  117. Kim K W, Kim T S, Jeon M K, et al. Ferroelectric properties of Bi4-xCexTi3O12(0<x<4) thin film array fabricated from Bi2O3/CeO2/TiO2 multilayers using multitarget sputtering. Appl Phys Lett, 2008, 92: 052911

    Google Scholar 

  118. Gremaud R, Broedersz C, Borsa D, et al. Hydrogenography: An optical combinatorial method to find new light-weight hydrogenstorage materials. Adv Mater, 2007, 19: 2813–2817

    Google Scholar 

  119. Dam B, Gremaud R, Broedersz C, et al. Combinatorial thin film methods for the search of new lightweight metal hydrides. Scripta Mater, 2007, 56: 853–858

    Google Scholar 

  120. Barcelo S, Mao S S. High throughput optical characterization of alloy hydrogenation. Int J Hydrogen Energy, 2010, 35: 7228–7231

    Google Scholar 

  121. Ding S, Liu Y, Li Y, et al. Combinatorial development of bulk metallic glasses. Nat Mater, 2014, 13: 494–500

    Google Scholar 

  122. Ding S, Gregoire J, Vlassak J J, et al. Solidification of Au-Cu-Si alloys investigated by a combinatorial approach. J Appl Phys, 2012, 111: 114901

    Google Scholar 

  123. Liu Y, Padmanabhan J, Cheung B, et al. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses. Sci Rep, 2016, 6: 26950

    Google Scholar 

  124. Li Y, Jensen K E, Liu Y, et al. Combinatorial strategies for synthesis and characterization of alloy microstructures over large compositional ranges. ACS Comb Sci, 2016, 18: 630–637

    Google Scholar 

  125. Etiemble A, Der Loughian C, Apreutesei M, et al. Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications. J Alloys Compd, 2017, 707: 155–161

    Google Scholar 

  126. Frost S, Guérin S, Hayden B E, et al. High-Throughput synthesis and characterization of Eu doped BaxSr2–xSiO4 thin film phosphors. ACS Comb Sci, 2018, 20: 451–460

    Google Scholar 

  127. Perkins J D, del Cueto J A, Alleman J L, et al. Combinatorial studies of Zn-Al-O and Zn-Sn-O transparent conducting oxide thin films. Thin Solid Films, 2002, 411: 152–160

    Google Scholar 

  128. Schenck P K, Klamo J L, Bassim N D, et al. Combinatorial study of the crystallinity boundary in the HfO2-TiO2-Y2O3 system using pulsed laser deposition library thin films. Thin Solid Films, 2008, 517: 691–694

    Google Scholar 

  129. Olk C H, Tibbetts G G, Simon D, et al. Combinatorial preparation and infrared screening of hydrogen sorbing metal alloys. J Appl Phys, 2003, 94: 720–725

    Google Scholar 

  130. Olk C H. Combinatorial approach to material synthesis and screening of hydrogen storage alloys. Meas Sci Technol, 2005, 16: 14–20

    Google Scholar 

  131. Otani M, Lowhorn N D, Schenck P K, et al. A high-throughput thermoelectric power-factor screening tool for rapid construction of thermoelectric property diagrams. Appl Phys Lett, 2007, 91: 132102

    Google Scholar 

  132. Watanabe M, Kita T, Fukumura T, et al. High-throughput screening for combinatorial thin-film library of thermoelectric materials. J Comb Chem, 2008, 10: 175–178

    Google Scholar 

  133. Otani M, Itaka K, Wong-Ng W, et al. Development of a highthroughput thermoelectric screening tool for combinatorial thin film libraries. Appl Surf Sci, 2007, 254: 765–767

    Google Scholar 

  134. Christen H M, Ohkubo I, Rouleau C M, et al. A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes. Meas Sci Technol, 2005, 16: 21–31

    Google Scholar 

  135. Christen H M, Silliman S D, Harshavardhan K S. Epitaxial superlattices grown by a PLD-based continuous compositional-spread technique. Appl Surf Sci, 2002, 189: 216–221

    Google Scholar 

  136. Christen H M, Silliman S D, Harshavardhan K S. Continuous compositional-spread technique based on pulsed-laser deposition and applied to the growth of epitaxial films. Rev Sci Instrum, 2001, 72: 2673–2678

    Google Scholar 

  137. O’Neill S A, Clark R J H, Parkin I P, et al. Anatase thin films on glass from the chemical vapor deposition of titanium (iv) chloride and ethyl acetate. Chem Mater, 2003, 15: 46–50

    Google Scholar 

  138. Guo Y, Zhang X, Han G. Investigation of structure and properties of N-doped TiO2 thin films grown by APCVD. Mater Sci Eng-B, 2006, 135: 83–87

    Google Scholar 

  139. O’Neill S, Parkin I P, Clark J H, et al. Photocatalytically active γ-WO3 films from atmospheric pressure CVD of WOCl4 with ethyl acetate or ethanol. Chem Vap Deposition, 2004, 10: 136–141

    Google Scholar 

  140. Xia B, Chen F, Campbell S A, et al. Combinatorial CVD of zirconium, hafnium, and tin oxide mixtures for applications as high-k materials. Chem Vap Deposition, 2004, 10: 195–200

    Google Scholar 

  141. Smith R C, Hoilien N, Roberts J, et al. Combinatorial chemical vapor deposition of metal dioxides using anhydrous metal nitrates. Chem Mater, 2002, 14: 474–476

    Google Scholar 

  142. Smith R C, Hoilien N, Chien J, et al. Combinatorial chemical vapor deposition. Achieving compositional spreads of titanium, tin, and hafnium oxides by balancing reactor fluid dynamics and depositions kinetics. ChemInform, 2003, 34: 292–298

    Google Scholar 

  143. Kafizas A, Parkin I P. The combinatorial atmospheric pressure chemical vapour deposition (CAPCVD) of a gradating N-doped mixed phase titania thin film. J Mater Chem, 2010, 20: 2157

    Google Scholar 

  144. Kafizas A, Hyett G, Parkin I P. Combinatorial atmospheric pressure chemical vapour deposition (CAPCVD) of a mixed vanadium oxide and vanadium oxynitride thin film. J Mater Chem, 2009, 19: 1399–1408

    Google Scholar 

  145. Kafizas A, Dunnill C W, Parkin I P. Combinatorial atmospheric pressure chemical vapour deposition (CAPCVD) of niobium doped anatase; effect of niobium on the conductivity and photocatalytic activity. J Mater Chem, 2010, 20: 8336–8349

    Google Scholar 

  146. Zhou J, Lin J, Huang X, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556: 355–359

    Google Scholar 

  147. Chen L, Bao J, Gao C, et al. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a dropon-demand inkjet delivery system. J Comb Chem, 2004, 6: 699–702

    Google Scholar 

  148. Chan T S, Kang C C, Liu R S, et al. Combinatorial study of the optimization of Y2O3:Bi, Eu red phosphors. J Comb Chem, 2007, 9: 343–346

    Google Scholar 

  149. Okamura S, Takeuchi R, Shiosaki T. Fabrication of ferroelectric Pb (Zr,Ti)O3 thin films with various Zr/Ti ratios by ink-jet printing. Jpn J Appl Phys, 2002, 41: 6714–6717

    Google Scholar 

  150. Bharathan J, Yang Y. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl Phys Lett, 1998, 72: 2660–2662

    Google Scholar 

  151. Chen L, Chen K J, Lin C C, et al. Combinatorial approach to the development of a single mass YVO4:Bi3+, Eu3+ phosphor with red and green dual colors for high color rendering white light-emitting diodes. J Comb Chem, 2010, 12: 587–594

    Google Scholar 

  152. Wang J, Mohebi M M, Evans J R G. Two methods to generate multiple compositions in combinatorial ink-jet printing of ceramics. Macromol Rapid Commun, 2005, 26: 304–309

    Google Scholar 

  153. Wang J, Evans J R G. Library preparation using an aspirating-dispensing ink-jet printer for combinatorial studies in ceramics. J Mater Res, 2005, 20: 2733–2740

    Google Scholar 

  154. Chen L, Luo A, Zhang Y, et al. Optimization of the single-phased white phosphor of Li2SrSiO4:Eu2+, Ce3+ for light-emitting diodes by using the combinatorial approach assisted with the taguchi method. ACS Comb Sci, 2012, 14: 636–644

    Google Scholar 

  155. Haber J A, Guevarra D, Jung S, et al. Discovery of new oxygen evolution reaction electrocatalysts by combinatorial investigation of the Ni-La-Co-Ce oxide composition space. ChemElectroChem, 2014, 1: 1613–1617

    Google Scholar 

  156. Shinde A, Jones R J R, Guevarra D, et al. High-throughput screening for acid-stable oxygen evolution electrocatalysts in the (Mn-Co-Ta-Sb)Ox composition space. Electrocatalysis, 2015, 6: 229–236

    Google Scholar 

  157. Liu X, Shen Y, Yang R, et al. Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett, 2012, 12: 5733–5739

    Google Scholar 

  158. Pullar R C. Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate. ACS Comb Sci, 2012, 14: 425–433

    Google Scholar 

  159. García-Cañadas J, Adkins N J E, McCain S, et al. Accelerated discovery of thermoelectric materials: Combinatorial facility and highthroughput measurement of thermoelectric power factor. ACS Comb Sci, 2016, 18: 314–319

    Google Scholar 

  160. Guram A, Hagemeyer A, Lugmair C, et al. Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis. Adv Synthesis Catal, 2004, 346: 215–230

    Google Scholar 

  161. Bergh S, Guan S, Hagemeyer A, et al. Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system. Appl Catal A-General, 2003, 254: 67–76

    Google Scholar 

  162. Moon H, Jeong S J, Lee Y T, et al. Preparation of a water-based Al/ Fe/Mo catalyst using a microfluidic system. Chem Lett, 2010, 39: 814–815

    Google Scholar 

  163. Zhou J, Zeng J, Grant J, et al. On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies. Small, 2011, 7: 3308–3316

    Google Scholar 

  164. Carbonell C, Stylianou K C, Hernando J, et al. Femtolitre chemistry assisted by microfluidic pen lithography. Nat Commun, 2013, 4: 2173

    Google Scholar 

  165. Jin S H, Jeong H H, Lee B, et al. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval. Lab Chip, 2015, 15: 3677–3686

    Google Scholar 

  166. Suga S, Okajima M, Fujiwara K, et al. “Cation flow” method: A new approach to conventional and combinatorial organic syntheses using electrochemical microflow systems. J Am Chem Soc, 2001, 123: 7941–7942

    Google Scholar 

  167. Suga S, Okajima M, Fujiwara K, et al. Electrochemical combinatorial organic syntheses using microflow systems. QSAR Comb Sci, 2005, 24: 728–741

    Google Scholar 

  168. Nagaki A, Togai M, Suga S, et al. Control of extremely fast competitive consecutive reactions using micromixing. Selective friedelcrafts aminoalkylation. J Am Chem Soc, 2005, 127: 11666–11675

    Google Scholar 

  169. Saito K, Ueoka K, Matsumoto K, et al. Indirect cation-flow method: Flash generation of alkoxycarbenium ions and studies on the stability of glycosyl cations. Angew Chem Int Ed, 2011, 50: 5153–5156

    Google Scholar 

  170. Yudin A K, Siu T. Combinatorial electrochemistry. Curr Opin Chem Biol, 2001, 5: 269–272

    Google Scholar 

  171. Siu T, Li W, Yudin A K. Parallel electrosynthesis of 1,2-diamines. J Comb Chem, 2001, 3: 554–558

    Google Scholar 

  172. Siu T, Li W, Yudin A K. Parallel electrosynthesis of a-alkoxycarbamates, α-alkoxyamides, and α-alkoxysulfonamides using the spatially addressable electrolysis platform (saep). J Comb Chem, 2000, 2: 545–549

    Google Scholar 

  173. Gütz C, Klöckner B, Waldvogel S R. Electrochemical screening for electroorganic synthesis. Org Process Res Dev, 2016, 20: 26–32

    Google Scholar 

  174. Edinger C, Grimaudo V, Broekmann P, et al. Stabilizing lead cathodes with diammonium salt additives in the deoxygenation of aromatic amides. ChemElectroChem, 2014, 1: 1018–1022

    Google Scholar 

  175. Edinger C, Kulisch J, Waldvogel S R. Stereoselective cathodic synthesis of 8-substituted (1R,3R,4S)-menthylamines. Beilstein J Org Chem, 2015, 11: 294–301

    Google Scholar 

  176. Edinger C, Waldvogel S R. Electrochemical deoxygenation of aromatic amides and sulfoxides. Eur J Org Chem, 2014, 2014: 5144–5148

    Google Scholar 

  177. Elsler B, Schollmeyer D, Dyballa K M, et al. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols. Angew Chem Int Ed, 2014, 114

    Google Scholar 

  178. Elsler B, Wiebe A, Schollmeyer D, et al. Source of selectivity in oxidative cross-coupling of aryls by solvent effect of 1,1,1,3,3,3-hexafluoropropan-2-ol. Chem Eur J, 2015, 21: 12321–12325

    Google Scholar 

  179. Schulz L, Enders M, Elsler B, et al. Reagent-and metal-free anodic C-C cross-coupling of aniline derivatives. Angew Chem Int Ed, 2017, 56: 4877–4881

    Google Scholar 

  180. Hartmer M F, Waldvogel S R. Electroorganic synthesis of nitriles via a halogen-free domino oxidation-reduction sequence. Chem Commun, 2015, 51: 16346–16348

    Google Scholar 

  181. Gütz C, Selt M, Bänziger M, et al. A novel cathode material for cathodic dehalogenation of 1,1-dibromo cyclopropane derivatives. Chem Eur J, 2015, 21: 13878–13882

    Google Scholar 

  182. Gao C, Bao J, Luo Z, et al. Recent progresses in the combinatorial materials science. Acta Phys Chim Sin, 2006, 22: 899–912

    Google Scholar 

  183. Naujoks D, Richert J, Decker P, et al. Phase formation and oxidation behavior at 500°C in a Ni-Co-Al thin-film materials library. ACS Comb Sci, 2016, 18: 575–582

    Google Scholar 

  184. Buenconsejo P J S, Siegel A, Savan A, et al. Preparation of 24 ternary thin film materials libraries on a single substrate in one experiment for irreversible high-throughput studies. ACS Comb Sci, 2012, 14: 25–30

    Google Scholar 

  185. Buenconsejo P J S, Ludwig A. New Au-Cu-Al thin film shape memory alloys with tunable functional properties and high thermal stability. Acta Mater, 2015, 85: 378–386

    Google Scholar 

  186. Sliozberg K, Schäfer D, Erichsen T, et al. High-throughput screening of thin-film semiconductor material libraries I: System development and case study for Ti-W-O. ChemSusChem, 2015, 8: 1270–1278

    Google Scholar 

  187. Meyer R, Sliozberg K, Khare C, et al. High-throughput screening of thin-film semiconductor material libraries II: Characterization of Fe-W-O libraries. ChemSusChem, 2015, 8: 1279–1285

    Google Scholar 

  188. Payne M A, Miller J B, Gellman A J. High-throughput characterization of early oxidation across AlxFeyNi1-x-y composition space. Corrosion Sci, 2015, 91: 46–57

    Google Scholar 

  189. Isaacs E D, Marcus M, Aeppli G, et al. Synchrotron X-ray microbeam diagnostics of combinatorial synthesis. Appl Phys Lett, 1998, 73: 1820–1822

    Google Scholar 

  190. Stoewe K, Maier W F, Weidenhof B. High-throughput materials discovery by inkjet-printing of composition spread libraries. MRS Proc, 2012, 1425

    Google Scholar 

  191. Ohtani M, Fukumura T, Kawasaki M, et al. Concurrent X-ray diffractometer for high throughput structural diagnosis of epitaxial thin films. Appl Phys Lett, 2001, 79: 3594–3596

    Google Scholar 

  192. Liu J, Liu Y, Gong P, et al. Combinatorial exploration of color in gold-based alloys. Gold Bull, 2015, 48: 111–118

    Google Scholar 

  193. Luo Z, Geng B, Bao J, et al. High-throughput X-ray characterization system for combinatorial materials studies. Rev Sci Instrum, 2005, 76: 095105

    Google Scholar 

  194. Wong-Ng W, Otani M, Levin I, et al. A phase relation study of Ba-YCu-O coated-conductor films using the combinatorial approach. Appl Phys Lett, 2009, 94: 171910

    Google Scholar 

  195. Green M L, Schenck P K, Chang K S, et al. “Higher-?” dielectrics for advanced silicon microelectronic devices: A combinatorial research study. MicroElectron Eng, 2009, 86: 1662–1664

    Google Scholar 

  196. Wang T, Wang L, Wang Q, et al. Pronounced plasticity caused by phase separation and ß-relaxation synergistically in Zr-Cu-Al-Mo bulk metallic glasses. Sci Rep, 2017, 7: 1238

    Google Scholar 

  197. Gregoire J M, McCluskey P J, Dale D, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Mater, 2012, 66: 178–181

    Google Scholar 

  198. McCluskey P J, Xiao K, Gregoire J M, et al. Application of in-situ nano-scanning calorimetry and X-ray diffraction to characterize Ni-Ti-Hf high-temperature shape memory alloys. ThermoChim Acta, 2015, 603: 53–62

    Google Scholar 

  199. Gregoire J M, Van Campen D G, Miller C E, et al. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. J Synchrotron Rad, 2014, 21: 1262–1268

    Google Scholar 

  200. Pathak S, Shaffer J, Kalidindi S. Determination of an effective zeropoint and extraction of indentation stress-strain curves without the continuous stiffness measurement signal. Scripta Mater, 2009, 60: 439–442

    Google Scholar 

  201. Kalidindi S R, Pathak S. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater, 2008, 56: 3523–3532

    Google Scholar 

  202. Zarnetta R, Kneip S, Somsen C, et al. High-throughput characterization of mechanical properties of Ti-Ni-Cu shape memory thin films at elevated temperature. Mater Sci Eng-A, 2011, 528: 6552–6557

    Google Scholar 

  203. Weaver J S, Priddy M W, McDowell D L, et al. On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater, 2016, 117: 23–34

    Google Scholar 

  204. Khosravani A, Cecen A, Kalidindi S R. Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: Application to dualphase steels. Acta Mater, 2017, 123: 55–69

    Google Scholar 

  205. Smith A P, Douglas J F, Meredith J C, et al. Combinatorial study of surface pattern formation in thin block copolymer films. Phys Rev Lett, 2001, 87: 015503

    Google Scholar 

  206. Smith A P, Douglas J F, Meredith J C, et al. High-throughput characterization of pattern formation in symmetric diblock copolymer films. J Polym Sci B Polym Phys, 2001, 39: 2141–2158

    Google Scholar 

  207. Smith A P, Douglas J F, Amis E J, et al. Effect of temperature on the morphology and kinetics of surface pattern formation in thin block copolymer films. Langmuir, 2007, 23: 12380–12387

    Google Scholar 

  208. Beers K L, Douglas J F, Amis E J, et al. Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene. Langmuir, 2003, 19: 3935–3940

    Google Scholar 

  209. Zapata P, Su J, García A J, et al. Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns. Biomacromolecules, 2007, 8: 1907–1917

    Google Scholar 

  210. Mok M M, Torkelson J M. Imaging of phase segregation in gradient copolymers: Island and hole surface topography. J Polym Sci B Polym Phys, 2012, 50: 189–197

    Google Scholar 

  211. Luo M, Seppala J E, Albert J N L, et al. Manipulating nanoscale morphologies in cylinder-forming poly(styrene-b-isoprene-b-styrene) thin films using film thickness and substrate surface chemistry gradients. Macromolecules, 2013, 46: 1803–1811

    Google Scholar 

  212. Shelton C K, Epps III T H. Mapping substrate surface field propagation in block polymer thin films. Macromolecules, 2016, 49: 574–580

    Google Scholar 

  213. Johnson P M, Reynolds T B, Stansbury J W, et al. High throughput kinetic analysis of photopolymer conversion using composition and exposure time gradients. Polymer, 2005, 46: 3300–3306

    Google Scholar 

  214. Lin-Gibson S, Landis F A, Drzal P L. Combinatorial investigation of the structure-properties characterization of photopolymerized dimethacrylate networks. Biomaterials, 2006, 27: 1711–1717

    Google Scholar 

  215. l’Abee R, Li W, Goossens H, et al. Application of FTIR microscopy in combinatorial experimentation on polymer blends. Macromol Symp, 2008, 265: 281–289

    Google Scholar 

  216. Vogel B M, Cabral J T, Eidelman N, et al. Parallel synthesis and high throughput dissolution testing of biodegradable polyanhydride copolymers. J Comb Chem, 2005, 7: 921–928

    Google Scholar 

  217. Zhang Y, Mallapragada S K, Narasimhan B. A novel high throughput method to investigate polymer dissolution. Macromol Rapid Commun, 2010, 31: 385–390

    Google Scholar 

  218. Lauterbach J, Wittmann M, Küppers J. Adsorption of CO at Ni(100) surfaces: A FTIRAS-TDS study. Surf Sci, 1992, 279: 287–296

    Google Scholar 

  219. Lauterbach J, Wittmann M, Küppers J. A FTIRAS study of CO adsorbed at Ni(100) surfaces. Berichte der Bunsengesellschaft für physikalische Chem, 1993, 97: 326–328

    Google Scholar 

  220. Fanson P T, Stradt M W, Delgass W N, et al. Infrared evidence for the existence of nitrate species on Cu-ZSM5 during isothermal rate oscillations in the decomposition of N2O. Catal Lett, 2001, 77: 15–19

    Google Scholar 

  221. Fanson P. FTIR analysis of storage behavior and sulfur tolerance in barium-based NOx storage and reduction (NSR) catalysts. Appl Catal B-Environ, 2003, 46: 393–413

    Google Scholar 

  222. Pyrz W, Vijay R, Binz J, et al. Characterization of k-promoted Ru catalysts for ammonia decomposition discovered using highthroughput experimentation. Top Catal, 2008, 50: 180–191

    Google Scholar 

  223. Taylor B, Lauterbach J, Delgass W N. Gas-phase epoxidation of propylene over small gold ensembles on ts-1. Appl Catal A-General, 2005, 291: 188–198

    Google Scholar 

  224. Snively C M, Lauterbach J. Sampling accessories for the highthroughput analysis of combinatorial libraries using spectral imaging. Spectroscopy, 2002, 17: 26–32

    Google Scholar 

  225. Sasmaz E, Mingle K, Lauterbach J. High-throughput screening using fourier-transform infrared imaging. Engineering, 2015, 1: 234–242

    Google Scholar 

  226. Loskyll J, Stoewe K, Maier W F. Infrared thermography as a highthroughput tool in catalysis research. ACS Comb Sci, 2012, 14: 295–303

    Google Scholar 

  227. Holzwarth A, Schmidt H W, Maier W F. Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by Ir thermography. Angew Chem Int Ed, 1998, 37: 2644–2647

    Google Scholar 

  228. Olong N, Stowe K, Maier W. HT-search for alkaline- and noblemetal-free mixed oxide catalysts for soot oxidation. Catal Today, 2008, 137: 110–118

    Google Scholar 

  229. Loskyll J, Stoewe K, Maier W F. High-throughput technology for novel SO2 oxidation catalysts. Sci Tech Adv Mater, 2011, 12: 054101

    Google Scholar 

  230. Kramer M, Duisberg M, Stowe K, et al. Highly selective co methanation catalysts for the purification of hydrogen-rich gas mixtures. J Catal, 2007, 251: 410–422

    Google Scholar 

  231. Domènech-Ferrer R, Rodríguez-Viejo J, González-Silveira M, et al. In situ infrared thermographic screening of compositional spread Mg-Ti thin-film libraries. J Alloys Compd, 2011, 509: 6497–6501

    Google Scholar 

  232. Domènech-Ferrer R, Rodríguez-Viejo J, Garcia G. Infrared imaging tool for screening catalyst effect on hydrogen storing thin film libraries. Catal Today, 2011, 159: 144–149

    Google Scholar 

  233. Ding J J, Jiu H F, Bao J, et al. Combinatorial study of cofluorescence of rare earth organic complexes doped in the poly(methyl methacrylate) matrix. J Comb Chem, 2005, 7: 69–72

    Google Scholar 

  234. Luo Z L, Geng B, Bao J, et al. Parallel solution combustion synthesis for combinatorial materials studies. J Comb Chem, 2005, 7: 942–946

    Google Scholar 

  235. Chen L, Fu Y, Zhang G, et al. Optimization of Pr3+, Tb3+, and Sm3+ Co-Doped(Y0.65Gd0.35)BO3:Eu0.05 3+ VUV phosphors through combinatorial approach. J Comb Chem, 2008, 10: 401–404

    Google Scholar 

  236. Ding J, Bao J, Sun S, et al. Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type (A= Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B = Al and In) binary oxides. J Comb Chem, 2009, 11: 523–526

    Google Scholar 

  237. Chen L, Chen K J, Hu S F, et al. Combinatorial chemistry approach to searching phosphors for white light-emitting diodes in (Gd-Y-Bi-Eu)VO4 quaternary system. J Mater Chem, 2011, 21: 3677–3685

    Google Scholar 

  238. Chen L, Chu C I, Chen K J, et al. An intelligent approach to the discovery of luminescent materials using a combinatorial approach combined with taguchi methodology. Luminescence, 2011, 26: 229–238

    Google Scholar 

  239. Su X, Zhang K, Liu Q, et al. Combinatorial optimization of (Lu1-xGdx)3Al5O12:Ce3y yellow phosphors as precursors for ceramic scintillators. ACS Comb Sci, 2011, 13: 79–83

    Google Scholar 

  240. Wei Q, Wan J, Liu G, et al. Combinatorial optimization of La, Ce-Co-doped pyrosilicate phosphors as potential scintillator materials. ACS Comb Sci, 2015, 17: 217–223

    Google Scholar 

  241. Reddington E, Sapienza A, Gurau B, et al. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280: 1735–1737

    Google Scholar 

  242. Jeon M K, Liu J H, Lee K R, et al. Combinatorial search for quaternary methanol tolerant oxygen electro-reduction catalyst. Fuel Cells, 2010, 1: NA

  243. Liu J H, Jeon M K, Woo S I. High-throughput screening of binary catalysts for oxygen electroreduction. Appl Surf Sci, 2006, 252: 2580–2587

    Google Scholar 

  244. Jin J, Prochaska M, Rochefort D, et al. A high-throughput search for direct methanol fuel cell anode electrocatalysts of type ptxbiypbz. Appl Surf Sci, 2007, 254: 653–661

    Google Scholar 

  245. Prochaska M, Jin J, Rochefort D, et al. High throughput screening of electrocatalysts for fuel cell applications. Rev Sci Instrum, 2006, 77: 054104

    Google Scholar 

  246. Tague M E, Gregoire J M, Legard A, et al. High throughput thin film Pt-M alloys for fuel electrooxidation: Low concentrations of M (M = Sn, Ta, W, Mo, Ru, Fe, In, Pd, Hf, Zn, Zr, Nb, Sc, Ni, Ti, V, Cr, Rh). J Electrochem Soc, 2012, 159: F880–F887

    Google Scholar 

  247. Welsch F G, Stöwe K, Maier W F. Rapid optical screening technology for direct methanol fuel cell (dmfc) anode and related electrocatalysts. Catal Today, 2011, 159: 108–119

    Google Scholar 

  248. Welsch F G, Stöwe K, Maier W F. Fluorescence-based high throughput screening for noble metal-free and platinum-poor anode catalysts for the direct methanol fuel cell. ACS Comb Sci, 2011, 13: 518–529

    Google Scholar 

  249. Dogan C, Stöwe K, Maier W F. Optical high-throughput screening for activity and electrochemical stability of oxygen reducing electrode catalysts for fuel cell applications. ACS Comb Sci, 2015, 17: 164–175

    Google Scholar 

  250. Jeon M K, Lee C H, Park G I, et al. Combinatorial search for oxygen reduction reaction electrocatalysts: A review. J Power Sources, 2012, 216: 400–408

    Google Scholar 

  251. Urquhart A, Anderson D, Taylor M, et al. High throughput surface characterisation of a combinatorial material library. Adv Mater, 2007, 19: 2486–2491

    Google Scholar 

  252. Schafer D, Mardare C, Savan A, et al. High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction. Anal Chem, 2011, 83: 1916–1923

    Google Scholar 

  253. Priyadarshini D, Kondratyuk P, Picard Y N, et al. High-throughput characterization of surface segregation in CuxPd1–x alloys. J Phys Chem C, 2011, 115: 10155–10163

    Google Scholar 

  254. Park S H, Choi C H, Koh J K, et al. Combinatorial high-throughput screening for highly active Pd-Ir-Ce based ternary catalysts in electrochemical oxygen reduction reaction. ACS Comb Sci, 2013, 15: 572–579

    Google Scholar 

  255. Uchic M D, Dimiduk D M, Florando J N, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305: 986–989

    Google Scholar 

  256. Uchic M D, Dimiduk D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater Sci Eng-A, 2005, 400-401: 268–278

    Google Scholar 

  257. Zarnetta R, Ehmann M, Savan A, et al. Identification of optimized Ti-Ni-Cu shape memory alloy compositions for high-frequency thin film microactuator applications. Smart Mater Struct, 2010, 19: 065032

    Google Scholar 

  258. Suram S K, Fackler S W, Zhou L, et al. Combinatorial discovery of lanthanum-tantalum oxynitride solar light absorbers with dilute nitrogen for solar fuel applications. ACS Comb Sci, 2018, 20: 26–34

    Google Scholar 

  259. Ziolkowski P, Wambach M, Ludwig A, et al. Application of highthroughput Seebeck microprobe measurements on thermoelectric Half-Heusler thin film combinatorial material libraries. ACS Comb Sci, 2018, 20: 1–18

    Google Scholar 

  260. Taylor S J, Morken J P. Thermographic selection of effective catalysts from an encoded polymer-bound library. Science, 1998, 280: 267–270

    Google Scholar 

  261. Urschey J, Weiss P A W, Scheidtmann J, et al. A low cost reactor for high-throughput activity screening of heterogeneous catalysts by mass spectrometry. Solid State Sci, 2003, 5: 909–916

    Google Scholar 

  262. Seok Oh K, Do Kyoung Kim K, Maier W F, et al. Discovery of new heterogeneous catalysts for the selective oxidation of propane to acrolein. CCHTS, 2007, 10: 5–12

    Google Scholar 

  263. Kim D, Maier W. Combinatorial discovery of new autoreduction catalysts for the CO2 reforming of methane. J Catal, 2006, 238: 142–152

    Google Scholar 

  264. Cong P, Doolen R D, Fan Q, et al. High-throughput synthesis and screening of combinatorial heterogeneous catalyst libraries. Angew Chem Int Ed, 1999, 38: 483–488

    Google Scholar 

  265. Yaccato K, Carhart R, Hagemeyer A, et al. Competitive CO and CO2 methanation over supported noble metal catalysts in high throughput scanning mass spectrometer. Appl Catal A-General, 2005, 296: 30–48

    Google Scholar 

  266. Claus P, Hönicke D, Zech T. Miniaturization of screening devices for the combinatorial development of heterogeneous catalysts. Catal Today, 2001, 67: 319–339

    Google Scholar 

  267. Krantz K, Ozturk S, Senkan S. Application of combinatorial catalysis to the selective reduction of no by C3H6. Catal Today, 2000, 62: 281–289

    Google Scholar 

  268. Miyazaki T, Ozturk S, Onal I, et al. Selective oxidation of propylene to propylene oxide using combinatorial methodologies. Catal Today, 2003, 81: 473–484

    Google Scholar 

  269. Zech T, Claus P, Hönicke D. Miniaturized reactors in combinatorial catalysis and high-throughput experimentation. CHIMIA Int J Chem, 2002, 56: 611–620

    Google Scholar 

  270. Zech T, Bohner G, Klein J. High-throughput screening of supported catalysts in massively parallel single-bead microreactors: Workflow aspects related to reactor bonding and catalyst preparation. Catal Today, 2005, 110: 58–67

    Google Scholar 

  271. Eckhard K, Schlüter O, Hagen V, et al. Spatially resolved mass spectrometry as a fast semi-quantitative tool for testing heterogeneous catalyst libraries under reducing stagnant-point flow conditions. Appl Catal A-General, 2005, 281: 115–120

    Google Scholar 

  272. Li N, Eckhard K, Aßmann J, et al. Scanning mass spectrometry with integrated constant distance positioning. Rev Sci Instrum, 2006, 77: 084102

    Google Scholar 

  273. Li N, Assmann J, Schuhmann W, et al. Spatially resolved characterization of catalyst-coated membranes by distance-controlled scanning mass spectrometry utilizing catalytic methanol oxidation as gas-solid probe reaction. Anal Chem, 2007, 79: 5674–5681

    Google Scholar 

  274. Nayar A, Liu R, Allen R J, et al. Laser-activated membrane introduction mass spectrometry for high-throughput evaluation of bulk heterogeneous catalysts. Anal Chem, 2002, 74: 1933–1938

    Google Scholar 

  275. Roos M, Kielbassa S, Schirling C, et al. Scanning mass spectrometer for quantitative reaction studies on catalytically active microstructures. Rev Sci Instrum, 2007, 78: 084104

    Google Scholar 

  276. Roos M, Bansmann J, Zhang D, et al. Product gas evolution above planar microstructured model catalysts—A combined scanning mass spectrometry, Monte Carlo, and Computational Fluid Dynamics study. J Chem Phys, 2010, 133: 094504

    Google Scholar 

  277. Richter M. Combinatorial preparation and high-throughput catalytic tests of multi-component denox catalysts. Appl Catal B-Environ, 2002, 36: 261–277

    Google Scholar 

  278. Wang H, Liu Z, Shen J. Quantified ms analysis applied to combinatorial heterogeneous catalyst libraries. J Comb Chem, 2003, 5: 802–808

    Google Scholar 

  279. Bedenbaugh J E, Kim S, Sasmaz E, et al. High-throughput investigation of catalysts for jp-8 fuel cracking to liquefied petroleum gas. ACS Comb Sci, 2013, 15: 491–497

    Google Scholar 

  280. Wang Y, Liu Y, Song S, et al. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun, 2018, 9: 2444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingYan Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hu, Z., Suo, Z. et al. High-throughput experiments facilitate materials innovation: A review. Sci. China Technol. Sci. 62, 521–545 (2019). https://doi.org/10.1007/s11431-018-9369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9369-9

Keywords

Navigation