Skip to main content
Log in

Identifying topologies and system parameters of uncertain time-varying delayed complex networks

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Node dynamics and network topologies play vital roles in determining the network features and network dynamical behaviors. Thus it is of great theoretical significance and practical value to recover the topology structures and system parameters of uncertain complex networks with available information. This paper presents an adaptive anticipatory synchronization-based approach to identify the unknown system parameters and network topological structures of uncertain time-varying delayed complex networks in the presence of noise. Moreover, during the identification process, our proposed scheme guarantees anticipatory synchronization between the uncertain drive and constructed auxiliary response network simultaneously. Particularly, our method can be extended to several special cases. Furthermore, numerical simulations are provided to verify the effectiveness and applicability of our method for reconstructing network topologies and node parameters. We hope our method can provide basic insight into future research on addressing reconstruction issues of uncertain realistic and large-scale complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barabási A L. The New Science of Networks. Cambridge, Massachusetts: Perseus Publishing, 2002

    Google Scholar 

  2. Strogatz S H. Exploring complex networks. Nature, 2001, 410: 268–276

    Article  MATH  Google Scholar 

  3. Albert R, Barabási A L. Statistical mechanics of complex networks. Rev Mod Phys, 2002, 74: 47–97

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang X F, Chen G R. Complex networks: Small-world, scale-free and beyond. IEEE Circuits Syst Mag, 2003, 3: 6–20

    Article  Google Scholar 

  5. Watts D J, Strogatz S H. Collective dynamics of “small-world” networks. Nature, 1998, 393: 440–442

    Article  MATH  Google Scholar 

  6. Chen Y, Lü J, Lin Z. Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica, 2013, 49: 1768–1775

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Y, Lü J, Yu X, et al. Consensus of discrete-time second-order multiagent systems based on infinite products of general stochastic matrices. SIAM J Control Optim, 2013, 51: 3274–3301

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen Y, Lü J. Delay-induced discrete-time consensus. Automatica, 2017, 85: 356–361

    Article  MathSciNet  MATH  Google Scholar 

  9. Lü J, Chen G. A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans Automat Contr, 2005, 50: 841–846

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu K, Duan P, Duan Z, et al. Leader-following consensus of multiagent systems with switching networks and event-triggered control. IEEE Trans Circuits Syst I, 2018, 65: 1696–1706

    Article  Google Scholar 

  11. Yu D, Righero M, Kocarev L. Estimating topology of networks. Phys Rev Lett, 2006, 97: 188701

    Article  Google Scholar 

  12. Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics. Phys Rep, 2006, 424: 175–308

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou J, Lu J. Topology identification of weighted complex dynamical networks. Physica A, 2007, 386: 481–491

    Article  MathSciNet  Google Scholar 

  14. Wu X, Wang W, Zheng W X. Inferring topologies of complex networks with hidden variables. Phys Rev E, 2012, 86: 046106

    Article  Google Scholar 

  15. Jansen R, Yu H, Greenbaum D, et al. A bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 2003, 302: 449–453

    Article  Google Scholar 

  16. Marwan N, Romano M C, Thiel M, et al. Recurrence plots for the analysis of complex systems. Phys Rep, 2007, 438: 237–329

    Article  MathSciNet  Google Scholar 

  17. Wang W X, Yang R, Lai Y C, et al. Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys Rev Lett, 2011, 106: 154101

    Article  Google Scholar 

  18. Han X, Shen Z, Wang W X, et al. Robust reconstruction of complex networks from sparse data. Phys Rev Lett, 2015, 114: 028701

    Article  Google Scholar 

  19. Wu X, Zhao X, Lu J, et al. Identifying topologies of complex dynamical networks with stochastic perturbations. IEEE Trans Control Netw Syst, 2016, 3: 379–389

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang Y F, Wu X Q, Feng H, et al. Topology inference of uncertain complex dynamical networks and its applications in hidden nodes detection. Sci China Tech Sci, 2016, 59: 1232–1243

    Article  Google Scholar 

  21. Zhang S, Wu X, Lu J A, et al. Recovering structures of complex dynamical networks based on generalized outer synchronization. IEEE Trans Circuits Syst I, 2014, 61: 3216–3224

    Article  Google Scholar 

  22. Wang Y, Wu X, Feng H, et al. Inferring topologies via driving-based generalized synchronization of two-layer networks. J Stat Mech, 2016, 2016: 053208

    Article  MathSciNet  Google Scholar 

  23. Wu Y, Liu L. Exponential outer synchronization between two uncertain time-varying complex networks with nonlinear coupling. Entropy, 2015, 17: 3097–3109

    Article  Google Scholar 

  24. Che Y, Li R X, Han C X, et al. Adaptive lag synchronization based topology identification scheme of uncertain general complex dynamical networks. Eur Phys J B, 2012, 85: 265

    Article  Google Scholar 

  25. Al-mahbashi G, Noorani M S M, Bakar S A, et al. Adaptive projective lag synchronization of uncertain complex dynamical networks with disturbance. Neurocomputing, 2016, 207: 645–652

    Article  Google Scholar 

  26. Che Y, Li R, Han C, et al. Topology identification of uncertain nonlinearly coupled complex networks with delays based on anticipatory synchronization. Chaos, 2013, 23: 013127

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang X L, Wei T. Revealing network topology and dynamical parameters in delay-coupled complex network subjected to random noise. Nonlinear Dyn, 2015, 82: 319–332

    Article  MathSciNet  MATH  Google Scholar 

  28. Voss H U. Anticipating chaotic synchronization. Phys Rev E, 2000, 61: 5115–5119

    Article  Google Scholar 

  29. Cao J D, Wang J. Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans Circuits Syst I, 2005, 52: 417–426

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu X. Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay. Physica A, 2008, 387: 997–1008

    Article  Google Scholar 

  31. Liu H, Lu J A, Lü J, et al. Structure identification of uncertain general complex dynamical networks with time delay. Automatica, 2009, 45: 1799–1807

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun Y, Li W, Ruan J. Generalized outer synchronization between complex dynamical networks with time delay and noise perturbation. Commun Nonlinear Sci Numer Simul, 2013, 18: 989–998

    Article  MathSciNet  MATH  Google Scholar 

  33. Mao X. Stochastic versions of the LaSalle theorem. J Differ Equ, 1999, 153: 175–195

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu J, Cao J. Synchronization-based approach for parameters identification in delayed chaotic neural networks. Physica A, 2007, 382: 672–682

    Article  Google Scholar 

  35. Khalil H K. Nonlinear Systems. 3rd ed. NJ: Prentice Hall, 2002

    MATH  Google Scholar 

  36. Liu K, Zhu H, Lü J. Cooperative stabilization of a class of LTI plants with distributed observers. IEEE Trans Circuits Syst I, 2017, 64: 1891–1902

    Article  MathSciNet  Google Scholar 

  37. Chen S K, Yu S M, Lü J H, et al. Design and FPGA-based realization of a chaotic secure video communication system.. IEEE Trans Circuits Syst Video Technol, 2018, 28: 2359–2371

    Article  Google Scholar 

  38. Lü J, Chen G. A new chaotic attractor coined. Int J Bifur Chaos, 2002, 12: 659–661

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinHu Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Gu, H., Wang, Q. et al. Identifying topologies and system parameters of uncertain time-varying delayed complex networks. Sci. China Technol. Sci. 62, 94–105 (2019). https://doi.org/10.1007/s11431-018-9287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9287-0

Keywords

Navigation