Skip to main content
Log in

Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer onboard a Chinese IGSO navigation satellite

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

An imaging energetic electron spectrometer built by the Peking University team (BD-IES) onboard a Chinese navigation satellite in an inclined GEO orbit has been launched successfully in September 2015, which measures the spectra of the energetic electrons with the energy range of 50–600 keV in nine directions. In this study, Monte Carlo simulations of the BD-IES sensor head were performed using Geant4 and the corresponding characteristic responses to the isotropic energetic particles were derived. The effective geometric factors were estimated using the typical electron and proton spectra in the GEO orbit and the corresponding simulated sensor head responses. It was found that the average effective geometric factors of nine directions are close to the nominal geometric factors calculated with the traditional method, but the effective geometric factor decreases as the center energy of the energy channel decreases. The BD-IES sensor head also responses to the energetic protons, but the average contamination rate of all 72 channels is about 2%, which means that the proton contamination is acceptable. The spectra of the energetic electrons measured by BD-IES are derived using the effective geometric factors of the sensor head and are comparable with the spectra measured by the magnetic electron ion spectrometer (MagEIS) instrument onboard Van Allen Probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker D N, Pulkkinen T I, Li X, et al. Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP. J Geophys Res, 1998, 103: 17279–17291

    Article  Google Scholar 

  2. Baker D N, Elkington S R, Li X, et al. Particle Acceleration in The Inner Magnetosphere: Physics and Modelling. Washington DC: AGU, 2005. 73–85

    Book  Google Scholar 

  3. Baker D N, Kanekal S G, Hoxie V C, et al. A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. Science, 2013, 340: 186–190

    Article  Google Scholar 

  4. Reeves G D. Relativistic electrons and magnetic storms: 1992–1995. Geophys Res Lett, 1998, 25: 1817–1820

    Article  Google Scholar 

  5. Reeves G D, Spence H E, Henderson M G, et al. Electron acceleration in the heart of the Van Allen radiation belts. Science, 2013, 341: 991–994

    Article  Google Scholar 

  6. Su Z, Zhu H, Xiao F, et al. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons. Nat Commun, 2015, 6: 10096

    Article  Google Scholar 

  7. Xiao F, Yang C, Su Z, et al. Wave-driven butterfly distribution of Van Allen belt relativistic electrons. Nat Commun, 2015, 6: 8590

    Article  Google Scholar 

  8. Mann I R, Ozeke L G, Murphy K R, et al. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt. Nat Phys, 2016, 12: 978–983

    Article  Google Scholar 

  9. Zong Q G, Hao Y X, Zou H, et al. Radial propagation of magnetospheric substorm-injected energetic electrons observed using a BDIES instrument and Van Allen Probes. Sci China Earth Sci, 2016, 59: 1508–1516

    Article  Google Scholar 

  10. Blake J B, Fennell J F, Friesen L M, et al. CEPPAD. Space Sci Rev, 1995, 71: 531–562

    Article  Google Scholar 

  11. Wilken B, Axford W I, Daglis I, et al. RAPID—The imaging energetic particle spectrometer on cluster. Space Sci Rev, 1997, 79: 399–473

    Article  Google Scholar 

  12. Sullivan J D. Geometric factor and directional response of single and multi-element particle telescopes. Nucl Instrum Methods, 1971, 95: 5–11

    Article  Google Scholar 

  13. Huston S L, Cantwell D, Dorman P, et al. Model for estimating directional flux and detector response for space radiation experiments. IEEE Trans Nucl Sci, 2007, 54: 1990–1996

    Article  Google Scholar 

  14. Chen H F, Shi W H, Zou H, et al. Discussion on the geometric factor in the detection of high energy electrons in geospace. Sci China Ser ETech Sci, 2008, 51: 1–9

    Article  Google Scholar 

  15. Evans D S, Greer M S. Polar Orbiting Environmental Satellite Space Environment Monitor-2: Instrument Descriptions and Archive Data Documentation. Boulder, CO: US Department of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research Laboratories, Space Environment Center, 2004

    Google Scholar 

  16. Marbach J R. An electron spectrometer for project Gemini. IEEE Trans Nucl Sci, 1966, 13: 464–467

    Article  Google Scholar 

  17. McQuaid J H. An electron & proton spectrometer detector system for an OGO-E satellite experiment. IEEE Trans Nucl Sci, 1966, 13: 515–522

    Article  Google Scholar 

  18. Korth A, Kremser G, Wilken B, et al. Electron and Proton wide-Angle Spectrometer (EPAS) on the CRRES spacecraft. J Spacecraft Rockets, 1992, 29: 609–614

    Article  Google Scholar 

  19. Blake J B, Carranza P A, Claudepierre S G, et al. The magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. Space Sci Rev, 2013, 179: 383–421

    Article  Google Scholar 

  20. Luo X M, Wang X F, Suo Z Y, et al. Efficient InSAR phase noise reduction via total variation regularization. Sci China Inf Sci, 2015, 58: 082306

    Article  Google Scholar 

  21. Zou H, Luo L, Li C F, et al. Angular response of ‘pin-hole’ imaging structure measured by collimated β source. Sci China Tech Sci, 2013, 56: 2675–2680

    Article  Google Scholar 

  22. Santin G, Nartallo R, Nieminen P, et al. Geant4 in the space environment: Tools and applications. In: 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). Portland: IEEE, 2003. 1522–1526

    Chapter  Google Scholar 

  23. Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications. IEEE Trans Nucl Sci, 2006, 53: 270–278

    Article  Google Scholar 

  24. Rädel L, Wiebusch C. Calculation of the Cherenkov light yield from low energetic secondary particles accompanying high-energy muons in ice and water with Geant4 simulations. Astroparticle Phys, 2012, 38: 53–67

    Article  Google Scholar 

  25. Letessier-Selvon A, Billoir P, Blanco M, et al. Layered water Cherenkov detector for the study of ultra high energy cosmic rays. Nucl Instrum Meth Phys Res Sect A, 2014, 767: 41–49

    Article  Google Scholar 

  26. Weidenspointner G, Pia M G, Zoglauer A. Application of the Geant4 PIXE implementation for space missions new models for PIXE simulation with Geant4. In: Nuclear Science Symposium Conference Record, 2008. Dresden: IEEE, 2008. 2877–2884

    Chapter  Google Scholar 

  27. Yando K, Millan R M, Green J C, et al. A Monte Carlo simulation of the NOAA POES medium energy proton and electron detector instrument. J Geophys Res, 2011, 116: A10231

    Article  Google Scholar 

  28. Sawyer D M, Vette J I. AP-8 trapped proton environment for solar maximum and solar minimum. NASA STI/Recon, Technical Report, 1976, 77

    Google Scholar 

  29. Vette J I. The AE-8 trapped electron model environment. NASA STI/ Recon Technical Report, 1991, 92

    Google Scholar 

  30. Xiao F, Shen C, Wang Y, et al. Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit. J Geophys Res, 2008, 113: A05203

    Google Scholar 

  31. Zhang S Y, Zhang X G, Wang C Q, et al. The geometric factor of high energy protons detector on FY-3 satellite. Sci China Earth Sci, 2014, 57: 2558–2566

    Article  Google Scholar 

  32. Su Z, Zhu H, Xiao F, et al. Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons. J Geophys Res Space Phys, 2014, 119: 4266–4273

    Article  Google Scholar 

  33. Xiao S D, Zhang T L, Wang G Q. Statistical study of low-frequency magnetic field fluctuations near Venus during the solar cycle. J Geophys Res Space Phys, 2017, 122: 8409–8418

    Article  Google Scholar 

  34. Xiao F, Yang C, He Z, et al. Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm. J Geophys Res Space Phys, 2014, 119: 3325–3332

    Article  Google Scholar 

  35. Li W, Ma Q, Thorne R M, et al. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations. J Geophys Res Space Phys, 2016, 121: 5520–5536

    Article  Google Scholar 

  36. Zong Q, Wang Y, Zou H, et al. New magnetospheric substorm injection monitor: Image electron spectrometer on board a Chinese navigation IGSO satellite. Space Weather, 2018, 16: 121–125

    Article  Google Scholar 

  37. Li L, Zhou X Z, Zong Q G, et al. Ultralow frequency wave characteristics extracted from particle data: Application of IGSO observations. Sci China Tech Sci, 2017, 60: 419–424

    Article  Google Scholar 

  38. Li L, Zhou X Z, Zong Q G, et al. Charged particle behavior in localized ultralow frequency waves: Theory and observations. Geophys Res Lett, 2017b, 44: 5900–5908

    Article  Google Scholar 

  39. Wang L H, Zong Q G, Shi Q Q, et al. Discrete energetic (~50–200 keV) electron events in the high-altitude cusp/polar cap/lobe. Sci China Tech Sci, 2017, 60: 1935–1940

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Ye, Y., Zong, Q. et al. Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer onboard a Chinese IGSO navigation satellite. Sci. China Technol. Sci. 62, 1169–1181 (2019). https://doi.org/10.1007/s11431-017-9314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9314-6

Keywords

Navigation