Science China Technological Sciences

, Volume 61, Issue 6, pp 830–842 | Cite as

Investigation of the spike-stall warning method using the blade passing signal

  • JiaYi Zhao
  • Guang Xi
  • ZhiHeng Wang
  • Yang Zhao


The vaned-diffuser usually brings compressor instability problems under the small flow rate, for instance the spike-type rotating stall phenomenon which restricts the operation range and may cause the trouble of blade fatigue. Since it is difficult to mathematically predict the spike-type stall for its randomness, finding out a practical method to warning this stall precursor appears to be meaningful. The paper explains the relationship between the spike-type precursor and the blade passing irregularity coefficient to analyze whether this coefficient is appropriate for the spike-stall warning inside a centrifugal compressor with the vaned-diffuser. The advanced wireless measurements were conducted on a 1.5 stages test centrifugal compressor to capture the unsteady behavior progressing from the design to stall inception within the region between the impeller trailing edge (TE) and diffuser leading edge (LE). The circumferential distribution of the blade passing irregularity has been quantitatively revealed. The steep increase of the blade passing irregularity at some “special locations”, which is responsible for the onset of the spike-type precursor, is highlighted. Also, to further understand the spike precursor inside the diffuser passage corresponding to the circumferential “special location” with maximum irregularity, the high-response transient measurement within this passage is presented. With the help of full-annulus computational fluid dynamics (CFD) simulation and the mathematical model, it is proved that the blade passing irregularity precisely reflects the flow characteristics during the spike precursor, which presents the guidance for this stall warning method.


centrifugal compressor transient measurement stall warning blade passing irregularity coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean R C, Young L R. The time domain of centrifugal compressor and pump stability and surge. J Fluids Eng, 1977, 99: 53–59CrossRefGoogle Scholar
  2. 2.
    Inoue M, Cumpsty N A. Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers. J Eng Gas Turbines Power, 1984, 106: 455–467CrossRefGoogle Scholar
  3. 3.
    Spakovszky Z S, Roduner C H. Spike and modal stall inception in an advanced turbocharger centrifugal compressor. J Turbomach, 2009, 131: 031012CrossRefGoogle Scholar
  4. 4.
    Camp T R, Day I J. 1997 best paper award—Turbomachinery committee: A study of spike and modal stall phenomena in a low-speed axial compressor. J Turbomach, 1998, 120: 393–401CrossRefGoogle Scholar
  5. 5.
    Day I J. Stall, surge, and 75 years of research. J Turbomach, 2016, 138: 011001CrossRefGoogle Scholar
  6. 6.
    Everitt J N, Spakovszky Z S. An investigation of stall inception in centrifugal compressor vaned diffuser. J Turbomach, 2013, 135: 011025CrossRefGoogle Scholar
  7. 7.
    Pullan G, Young A M, Day I J, et al. Origins and structure of spiketype rotating stall. J Turbomach, 2015, 137: 051007CrossRefGoogle Scholar
  8. 8.
    Ohta Y, Fujisawa N. Unsteady behavior and control of vortices in centrifugal compressor. J Therm Sci, 2014, 23: 401–411CrossRefGoogle Scholar
  9. 9.
    Fujisawa N, Ikezu S, Ohta Y. Structure of diffuser stall and unsteady vortices in a centrifugal compressor with vaned diffuser. In: Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul: ASME, 2016Google Scholar
  10. 10.
    Fink D A, Cumpsty N A, Greitzer E M. Surge dynamics in a freespool centrifugal compressor system. J Turbomach, 1992, 114: 321–332CrossRefGoogle Scholar
  11. 11.
    Galindo J, Tiseira A, Arnau F J, et al. On-engine measurement of turbocharger surge limit. Exp Tech, 2013, 37: 47–54CrossRefGoogle Scholar
  12. 12.
    Tomita I, Ibaraki S, Furukawa M, et al. The effect of tip leakage vortex for operating range enhancement of centrifugal compressor. J Turbomach, 2013, 135: 051020CrossRefGoogle Scholar
  13. 13.
    Vo H D, Tan C S, Greitzer E M. Criteria for spike initiated rotating stall. J Turbomach, 2008, 130: 011023CrossRefGoogle Scholar
  14. 14.
    Yamada K, Kikuta H, Iwakiri K, et al. An explanation for flow features of spike-type stall inception in an axial compressor rotor. J Turbomach, 2013, 135: 021023CrossRefGoogle Scholar
  15. 15.
    Eckardt D. Detailed flow investigations within a high-speed centrifugal compressor impeller. J Fluids Eng, 1976, 98: 390–399CrossRefGoogle Scholar
  16. 16.
    Dhingra M, Neumeier Y, Prasad J V R, et al. Stall and surge precursors in axial compressors. In: Proceedings of 39th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit. Huntsville: AIAA, 2003Google Scholar
  17. 17.
    Christensen D, Cantin P, Gutz D, et al. Development and demonstration of a stability management system for gas turbine engines. J Turbomach, 2008, 130: 031011CrossRefGoogle Scholar
  18. 18.
    Liu Y, Dhingra M, Prasad J V R. Active compressor stability management via a stall margin control mode. J Eng Gas Turbines Power, 2010, 132: 051602CrossRefGoogle Scholar
  19. 19.
    Young A, Day I, Pullan G. Stall warning by blade pressure signature analysis. In: Proceedings of ASME Turbo Expo 2011: Turbine Technical Conference and Exposition. Vancouver: ASME, 2011Google Scholar
  20. 20.
    Ayder E, Braembussche R V D. Experimental study of the swirling flow in the internal volute of a centrifugal compressor. In: Proceedings of ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. Orlando: ASME, 1991Google Scholar
  21. 21.
    Ayder E, Van den Braembussche R, Brasz J J. Experimental and theoretical analysis of the flow in a centrifugal compressor volute. J Turbomach, 1993, 115: 582–589CrossRefGoogle Scholar
  22. 22.
    Hagelstein D, Braembussche R A V D, Keiper R, et al. Experimental Investigation of the circumferential static Pressure Distortion in Centrifugal Compressor Stages. In: Proceedings of ASME Gasturbine Conference. Orlando: ASME, 1997Google Scholar
  23. 23.
    Sorokes J M, Borer C J, Koth J M. Investigation of the circumferential static pressure non-uniformity caused by a centrifugal compressor discharge volute. In: Proceedings of ASME Turbo Expo 1998: Turbomachinery Technical Conference and Exposition. Stockholm: ASME, 1998Google Scholar
  24. 24.
    Gu F, Engeda A. A numerical investigation on the volute/impeller steady-state interaction due to circumferential distortion. In: Proceedings of ASME Turbo Expo 2001: Power for Land, Sea, and Air. New Orleans: ASME, 2001Google Scholar
  25. 25.
    Gu F, Engeda A, Cave M, et al. A numerical investigation on the volute/diffuser interaction due to the axial distortion at the impeller exit. J Fluids Eng, 2001, 123: 475–483CrossRefGoogle Scholar
  26. 26.
    Zheng X, Jin L, Tamaki H. Influence of volute-induced distortion on the performance of a high-pressure-ratio centrifugal compressor with a vaneless diffuser for turbocharger applications. P I Mech Eng A-J Pow, 2014, 228: 440–450Google Scholar
  27. 27.
    Yang M, Zheng X, Zhang Y, et al. Stability improvement of highpressure-ratio turbocharger centrifugal compressor by asymmetric flow control—Part I: Non-axisymmetrical flow in centrifugal compressor. J Turbomach, 2013, 135: 021006CrossRefGoogle Scholar
  28. 28.
    Li X, Gong W, Zhang X, et al. An experimental investigation of the vane clocking effects on the centrifugal compressor time-averaged performance. P I Mech Eng A-J Pow, 2014, 228: 83–96Google Scholar
  29. 29.
    LI X C. Investigation of the transient flow field and the vane clocking effects in a centrifugal compressor. Dissertation for Doctoral Degree. Xi’an: Xi’an Jiaotong University, 2013Google Scholar
  30. 30.
    Marsan A, Trébinjac I, Coste S, et al. Temporal behaviour of a corner separation in a radial vaned diffuser of a centrifugal compressor operating near surge. J Therm Sci, 2013, 22: 555–564CrossRefGoogle Scholar
  31. 31.
    Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale, 2003, 439: 5–21Google Scholar
  32. 32.
    Zhao J Y, Wang Z H, Xi G, et al. Investigation of performance and flow field of a centrifugal compressor under negative pre-swirl. In: Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montreal: ASME, 2015Google Scholar
  33. 33.
    Denton J D. The 1993 IGTI scholar lecture: Loss mechanisms in turbomachines. J Turbomach, 1993, 115: 621–656CrossRefGoogle Scholar
  34. 34.
    Zheng X Q, Huenteler J, Yang M Y, et al. Influence of the volute on the flow in a centrifugal compressor of a high-pressure ratio turbocharger. P I Mech Eng A-J Pow, 2010, 224: 1157–1169Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations