Skip to main content
Log in

Influences of external heat transfer and Thomson effect on the performance of TEG-TEC combined thermoelectric device

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A thermodynamic model of a thermoelectric generator (TEG)-driven thermoelectric cooler (TEC) device considering Thomson effect and external heat transfer (HT) is established based on the combination of non-equilibrium and finite time thermodynamic theories. The expressions of cooling capacity and coefficient of performance (COP) are obtained. Performances are compared with and without considering Thomson effect using numerical optimization method. The influences of Thomson effect on the optimal performances, optimum allocations of thermoelectric (TE) element number and HT surface area are discussed. The results indicate that Thomson effect decreases the maximum cooling capacity and COP. More TE elements should be allocated to TEG, and more HT area should be allocated to the heat exchanger (HEX) of TEG, the hot-side HEX of TEG and the cold-side HEX of TEC in the design of the device considering Thomson effect. The results obtained can be used to help design TEG-TEC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Honig J M, Harman T C. Thermoelectric and Thermomagnetic Effects and Applications. New York: McGraw-Hill, 1967

    Google Scholar 

  2. Goldsmid H J. Introduction to Thermoelectricity. Heidelberg: Springer, 2010

    Book  Google Scholar 

  3. Skipidarov S, Nikitin M. Thermoelectrics for Power Generation—A Look at Trends in the Technology. Rijeka, Croatia: InTech-Open Access Publisher, 2017

    Google Scholar 

  4. Riffat S B, Ma X. Thermoelectrics: A review of present and potential applications. Appl Thermal Eng, 2003, 23: 913–935

    Article  Google Scholar 

  5. Purhoit K, Meena P M, Singh K, et al. Review paper on optimizations of thermoelectric system. International J Innov Res Eng Manag, 2016, 3: 259–263

    Google Scholar 

  6. Twaha S, Zhu J, Yan Y, et al. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew Sustain Energy Rev, 2016, 65: 698–726

    Article  Google Scholar 

  7. Champier D. Thermoelectric generators: A review of applications. Energy Convers Manage, 2017, 140: 167–181

    Article  Google Scholar 

  8. Wisniewski S, Staniszewski B, Szymanik R. Thermodynamics of nonequilibrium processes. NASA STI/Recon Technical Report A, 1976

    MATH  Google Scholar 

  9. Bejan A. Advanced Engineering Thermodynamics. 2nd ed. New York: Wiley, 1997. 850

    Google Scholar 

  10. Andresen B. Recent advances in thermodynamics research including non-equilibrium thermodynamics. Nagpur: Nagpur University, 2008

    Google Scholar 

  11. Sieniutycz S. Thermodynamic Approaches in Engineering Systems. Oxford: Elsevier, 2016

    Google Scholar 

  12. Chen Q, Wang Y F. Differences and relations of objectives, constraints, and decision parameters in the optimization of individual heat exchangers and thermal systems. Sci China Tech Sci, 2016, 59: 1071–1079

    Article  Google Scholar 

  13. Li Y H, Wu Z H, Xie H Q, et al. Study on the performance of TEG with heat transfer enhancement using graphene-water nanofluid for a TEG cooling system. Sci China Tech Sci, 2017, 60: 1168–1174

    Article  Google Scholar 

  14. Şişman A, Yavuz H. The effect of Joule losses on the total efficiency of a thermoelectric power cycle. Energy, 1995, 20: 573–576

    Article  Google Scholar 

  15. Yamashita O. Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency. Energy Convers Manage, 2009, 50: 1968–1975

    Article  Google Scholar 

  16. Wang Y, Su S, Liu T, et al. Performance evaluation and parametric optimum design of an updated thermionic-thermoelectric generator hybrid system. Energy, 2015, 90: 1575–1583

    Article  Google Scholar 

  17. Liu Z, Zhu S, Ge Y, et al. Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method. Appl Energy, 2017, 190: 540–552

    Article  Google Scholar 

  18. Chen W H, Huang S R, Wang X D, et al. Performance of a thermoelectric generator intensified by temperature oscillation. Energy, 2017, 133: 257–269

    Article  Google Scholar 

  19. Ali H, Yilbas B S. Innovative design of a thermoelectric generator of extended legs with tapering and segmented pin configuration: Thermal performance analysis. Appl Thermal Eng, 2017, 123: 74–91

    Article  Google Scholar 

  20. Huang B J, Chin C J, Duang C L. A design method of thermoelectric cooler. Int J Refriger, 2000, 23: 208–218

    Article  Google Scholar 

  21. Xuan X C. Investigation of thermal contact effect on thermoelectric coolers. Energy Convers Manage, 2003, 44: 399–410

    Article  Google Scholar 

  22. Yu J, Zhao H, Xie K. Analysis of optimum configuration of two-stage thermoelectric modules. Cryogenics, 2007, 47: 89–93

    Article  Google Scholar 

  23. Wang X D, Wang Q H, Xu J L. Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model. Energy, 2014, 65: 419–429

    Article  Google Scholar 

  24. Pietrzyk K, Ohara B, Watson T, et al. Thermoelectric module design strategy for solid-state refrigeration. Energy, 2016, 114: 823–832

    Article  Google Scholar 

  25. Lin S, Yu J. Optimization of a trapezoid-type two-stage Peltier couples for thermoelectric cooling applications. Int J Refriger, 2016, 65: 103–110

    Article  Google Scholar 

  26. Hadidi A. Optimization of electrically separated two-stage thermoelectric refrigeration systems using chemical reaction optimization algorithm. Appl Thermal Eng, 2017, 123: 514–526

    Article  Google Scholar 

  27. Gao Y W, Lv H, Wang X D, et al. Enhanced Peltier cooling of twostage thermoelectric cooler via pulse currents. Int J Heat Mass Transfer, 2017, 114: 656–663

    Article  Google Scholar 

  28. Mortlock A J. Experiments with a thermoelectric heat pump. Am J Phys, 1965, 33: 813–815

    Article  Google Scholar 

  29. Lai H, Pan Y, Chen J. Optimum design on the performance parameters of a two-stage combined semiconductor thermoelectric heat pump. Semicond Sci Technol, 2004, 19: 17–22

    Article  Google Scholar 

  30. Riffat S B, Ma X, Wilson R. Performance simulation and experimental testing of a novel thermoelectric heat pump system. Appl Thermal Eng, 2006, 26: 494–501

    Article  Google Scholar 

  31. Hans R, Kaushik S C, Manikandan S. Performance optimisation of two-stage exoreversible thermoelectric heat pump in electrically series, parallel and isolated configurations. Int J Energy Technol Policy, 2016, 12: 313–332

    Article  Google Scholar 

  32. Nemati A, Nami H, Yari M, et al. Development of an exergoeconomic model for analysis and multi-objective optimization of a thermoelectric heat pump. Energy Convers Manage, 2016, 130: 1–13

    Article  Google Scholar 

  33. Khattab N M, El Shenawy E T. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energy Convers Manage, 2006, 47: 407–426

    Article  Google Scholar 

  34. Chen X, Lin B, Chen J. The parametric optimum design of a new combined system of semiconductor thermoelectric devices. Appl Energy, 2006, 83: 681–686

    Article  Google Scholar 

  35. Meng F K, Chen L G, Sun F R, et al. Thermodynamic analysis and optimisation of a new-type thermoelectric heat pump driven by a thermoelectric generator. Int J Ambient Energy, 2009, 30: 95–101

    Article  Google Scholar 

  36. Meng F K, Chen L G, Sun F R. Performance optimization for twostage thermoelectric refrigerator system driven by two-stage thermoelectric generator. Cryogenics, 2009, 49: 57–65

    Article  Google Scholar 

  37. Meng F K, Chen L G, Sun F R. Extreme working temperature differences for thermoelectric refrigerating and heat pumping devices driven by thermoelectric generator. J Energy Inst, 2010, 83: 108–113

    Article  Google Scholar 

  38. Meng F K, Chen L G, Sun F R. Multiobjective analyses of physical dimension on the performance of a TEG-TEC system. Int J Low-Carbon Technol, 2010, 5: 193–200

    Article  Google Scholar 

  39. Meng F K, Chen L G, Sun F R. Effects of thermocouples’ physical size on the performance of the TEG-TEH system. Int J Low-Carbon Tech, 2016, 11: 375–382

    Article  Google Scholar 

  40. Bejan A. Entropy Generation through Heat and Fluid Flow. New York: Wiley, 1982

    Google Scholar 

  41. Andresen B. Finite-Time Thermodynamics. Copenhagen: University of Copenhagen, 1983

    Google Scholar 

  42. Sieniutycz S, Shiner J S. Thermodynamics of irreversible processes and its relation to chemical engineering: Second law analyses and finite time thermodynamics. J Non-Equil Thermodyn, 1994, 19: 303–348

    MATH  Google Scholar 

  43. Meng F K, Wu C, Sun F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilibrium ThermoDyn, 1999, 24: 327–359

    MATH  Google Scholar 

  44. Chen L G, Sun F R. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  45. Chen L G. Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  46. Petrescu S, Harman C, Costea M, et al. Irreversible finite speed thermodynamics (IFST) in simple closed systems. I. Fundamental concepts. Termotehnica, 2009, 13: 8–18

    Google Scholar 

  47. Andresen B. Current trends in finite-time thermodynamics. Angew Chem Int Ed, 2011, 50: 2690–2704

    Article  Google Scholar 

  48. Sieniutycz S, Jezowski J. Energy Optimization in Process Systems and Fuel Cells. Oxford: Elsevier, 2013

    Google Scholar 

  49. Ding Z M, Chen L G, Wang W H, et al. Progress in study on finite time thermodynamic performance optimization for three kinds of microscopic energy conversion systems (in Chinese). Sci Sin Tech, 2015, 45: 889–918

    Google Scholar 

  50. Ge Y L, Chen L G, Sun F R. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 2016, 18: 139

    Article  Google Scholar 

  51. Chen L G, Feng H J, Xie Z H. Generalized thermodynamic optimization for iron and steel production processes: Theoretical exploration and application cases. Entropy, 2016, 18: 353

    Article  Google Scholar 

  52. Chen L G, Xia S J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes (in Chinese). Beijing: Science Press, 2017

    Google Scholar 

  53. Chen L G, Xia S J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles—Engineering Thermodynamic Plants and Generalized Engine Cycles (in Chinese). Beijing: Science Press, 2017

    Google Scholar 

  54. Chen L G, Xia S J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles Thermodynamic and Chemical Theoretical Cycles (in Chinese). Beijing: Science Press, 2017

    Google Scholar 

  55. Bi Y H, Chen L G. Finite Time Thermodynamic Optimization for Air Heat Pumps. (in Chinese) Beijing: Science Press, 2017

    Google Scholar 

  56. Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455

    Article  Google Scholar 

  57. Gordon J M. Generalized power versus efficiency characteristics of heat engines: The thermoelectric generator as an instructive illustration. Am J Phys, 1991, 59: 551–555

    Article  Google Scholar 

  58. Chen J, Wu C. Analysis on the performance of a thermoelectric generator. J Energy Resour Technol, 2000, 122: 61–63

    Article  Google Scholar 

  59. Chen L G, Li J, Sun F R, et al. Performance optimization of a twostage semiconductor thermoelectric-generator. Appl Energy, 2005, 82: 300–312

    Article  Google Scholar 

  60. Meng F K, Chen L G, Sun F R. A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities. Energy, 2011, 36: 3513–3522

    Article  Google Scholar 

  61. Shu G, Zhao J, Tian H, et al. Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy, 2012, 45: 806–816

    Article  Google Scholar 

  62. Islam S, Dincer I, Yilbas B S. Energetic and exergetic performance analyses of a solar energy-based integrated system for multigeneration including thermoelectric generators. Energy, 2015, 93: 1246–1258

    Article  Google Scholar 

  63. Tian H, Sun X, Jia Q, et al. Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine. Energy, 2015, 84: 121–130

    Article  Google Scholar 

  64. Ali H, Yilbas B S, Al-Sharafi A. Innovative design of a thermoelectric generator with extended and segmented pin configurations. Appl Energy, 2017, 187: 367–379

    Article  Google Scholar 

  65. Meng F K, Chen L G, Feng Y L, et al. Thermoelectric generator for industrial gas phase waste heat recovery. Energy, 2017, 135: 83–90

    Article  Google Scholar 

  66. Göktun S. Design considerations for a thermoelectric refrigerator. Energy Convers Manage, 1995, 36: 1197–1200

    Article  Google Scholar 

  67. Luo J, Chen L G, Sun F R, et al. Optimum allocation of heat transfer surface area for cooling load and COP optimization of a thermoelectric refrigerator. Energy Convers Manage, 2003, 44: 3197–3206

    Article  Google Scholar 

  68. Meng F K, Chen L G, Sun F R. Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger. Acta Phys Pol A, 2011, 120: 397–406

    Article  Google Scholar 

  69. Hans R, Manikandan S, Kaushik S C. Performance optimization of two-stage exoreversible thermoelectric converter in electrically series and parallel configuration. J Elec Materi, 2015, 44: 3571–3580

    Article  Google Scholar 

  70. Ohara B, Sitar R, Soares J, et al. Optimization strategies for a portable thermoelectric vaccine refrigeration system in developing communities. J Elec Materi, 2015, 44: 1614–1626

    Article  Google Scholar 

  71. Manikandan S, Kaushik S C, Yang R. Modified pulse operation of thermoelectric coolers for building cooling applications. Energy Convers Manage, 2017, 140: 145–156

    Article  Google Scholar 

  72. Tan H, Fu H, Yu J. Evaluating optimal cooling temperature of a singlestage thermoelectric cooler using thermodynamic second law. Appl Thermal Eng, 2017, 123: 845–851

    Article  Google Scholar 

  73. Chen L G, Li J, Sun F R, et al. Optimum allocation of heat transfer surface area for heating load and COP optimisation of a thermoelectric heat pump. Int J Ambient Energy, 2007, 28: 189–196

    Article  Google Scholar 

  74. Chen L G, Li J, Sun F R, et al. Performance optimization for a twostage thermoelectric heat-pump with internal and external irreversibilities. Appl Energy, 2008, 85: 641–649

    Article  Google Scholar 

  75. Liu D, Zhao F Y, Yang H, et al. Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels. Appl Energy, 2015, 159: 458–468

    Article  Google Scholar 

  76. Ramousse J. Entropy analysis of thermoelectric heat pumps including multi-channel heat exchangers: Design considerations. Int J Thermo, 2016, 19: 82–90

    Article  Google Scholar 

  77. Chen L G, Meng F K, Sun F R. Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system. Cryogenics, 2012, 52: 58–65

    Article  Google Scholar 

  78. Chen L G, Meng F K, Sun F R, et al. Optimum variables selection of thermoelectric generator-driven thermoelectric refrigerator at different source temperature. Int J Ambient Energy, 2012, 33: 108–117

    Article  Google Scholar 

  79. Manikandan S, Kaushik S C. Thermodynamic studies and maximum power point tracking in thermoelectric generator-thermoelectric cooler combined system. Cryogenics, 2015, 67: 52–62

    Article  Google Scholar 

  80. Jamali S, Yari M, Mohammadkhani F. Performance improvement of a transcritical CO2 refrigeration cycle using two-stage thermoelectric modules in sub-cooler and gas cooler. Int J Refriger, 2017, 74: 105–115

    Article  Google Scholar 

  81. Chen J, Yan Z, Wu L. The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator. J Appl Phys, 1996, 79: 8823–8828

    Article  Google Scholar 

  82. Chen J. Nonequilibrium thermodynamic analysis of a thermoelectric device. Energy, 1997, 22: 979–985

    Article  Google Scholar 

  83. Huang M J, Yen R H, Wang A B. The influence of the Thomson effect on the performance of a thermoelectric cooler. Int J Heat Mass Transfer, 2005, 48: 413–418

    Article  MATH  Google Scholar 

  84. Chen W H, Liao C Y, Hung C I. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect. Appl Energy, 2012, 89: 464–473

    Article  Google Scholar 

  85. Lamba R, Kaushik S C. Thermodynamic analysis of thermoelectric generator including influence of Thomson effect and leg geometry configuration. Energy Convers Manage, 2017, 144: 388–398

    Article  Google Scholar 

  86. Feng Y L, Chen L G, Meng F K, et al. Thermodynamic analysis of TEG-TEC device including influence of Thomson effect. J Non-Equilibrium ThermoDyn, 2018, 43: 75–86

    Article  Google Scholar 

  87. Feng Y L, Chen L G, Meng F K, et al. Influences of the Thomson effect on the performance of a thermoelectric generator-driven thermoelectric heat pump combined device. Entropy, 2018, 20: 29

    Article  Google Scholar 

  88. Ortega P R, Olivares-Robles M. Analysis of a hybrid thermoelectric microcooler: thomson heat and geometric optimization. Entropy, 2017, 19: 312

    Article  Google Scholar 

  89. Huang M J, Chou P K, Lin M C. Thermal and thermal stress analysis of a thin-film thermoelectric cooler under the influence of the Thomson effect. Senss Actuat A-Phys, 2006, 126: 122–128

    Article  Google Scholar 

  90. Kaushik S C, Manikandan S. The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator. Energy Convers Manage, 2015, 103: 200–207

    Article  Google Scholar 

  91. Manikandan S, Kaushik S C. Energy and exergy analysis of solar heat pipe based annular thermoelectric generator system. Sol Energy, 2016, 135: 569–577

    Article  Google Scholar 

  92. Manikandan S, Kaushik S C. Energy and exergy analysis of an annular thermoelectric cooler. Energy Convers Manage, 2015, 106: 804–814

    Article  Google Scholar 

  93. Kaushik S C, Manikandan S, Hans R. Energy and exergy analysis of an annular thermoelectric heat pump. J Elec Mater, 2016, 45: 3400–3409

    Article  Google Scholar 

  94. Manikandan S, Kaushik S C. The influence of Thomson effect in the performance optimization of a two stage thermoelectric generator. Energy, 2016, 100: 227–237

    Article  Google Scholar 

  95. Kaushik S C, Manikandan S. The influence of Thomson effect in the performance optimization of a two stage thermoelectric cooler. Cryogenics, 2015, 72: 57–64

    Article  Google Scholar 

  96. Melcor. Thermoelectric Handbook. Available from: https://doi.org/www.lairdtech.com/.2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Chen, L., Meng, F. et al. Influences of external heat transfer and Thomson effect on the performance of TEG-TEC combined thermoelectric device. Sci. China Technol. Sci. 61, 1600–1610 (2018). https://doi.org/10.1007/s11431-017-9223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9223-5

Keywords

Navigation