Skip to main content
Log in

Reconstructing the flux-rope topology using the FOTE method

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

With high-resolution data of the Magnetospheric Multiscale (MMS) mission, we observe a magnetic flux rope (MFR) in the Earth’s magnetosheath. This MFR, showing a clear bipolar variation of the magnetic field in the normal component to local current sheet, contains a strong core field. We use the FOTE method to reconstruct the topology of this MFR and find it is consistent with previous expectation. For the first time, the spiral field and core field of the MFR are both revealed from the FOTE method. Comparing topologies reconstructed at different times, we suggest that the axis of the MFR rotates about 88° at different spatial location. Shape and size of the normal projection to axis vary with the spatial location as well. Inside the MFR, a significant increase of plasma density from 40 to 80 cm−3, a sharp decrease of ion temperature from 200 to 50 eV, an enhancement of cold ions and a series of filamentary currents are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y M, Zhuang B, Hu Q, et al. On the twists of interplanetary magnetic flux ropes observed at 1 AU. J Geophys Res-Space Phys, 2016, 121: 9316–9339

    Article  Google Scholar 

  2. Feng H Q, Wu D J, Wang J M, et al. Magnetic reconnection exhausts at the boundaries of small interplanetary magnetic flux ropes. Astron Astrophys, 2011, 527: A67

    Article  Google Scholar 

  3. Farrugia C J, Osherovich V A, Burlaga L F. Magnetic flux rope versus the Spheromak as models for interplanetary magnetic clouds. J Geophys Res, 1995, 100: 12293–12306

    Article  Google Scholar 

  4. Russell C T, Elphic R C. Initial ISEE magnetometer results: Magnetopause observations. Space Sci Rev, 1978, 22: 681–715

    Article  Google Scholar 

  5. Eastwood J P, Phan T D, Cassak P A, et al. Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS. Geophys Res Lett, 2016, 43: 4716–4724

    Article  Google Scholar 

  6. Hwang K J, Sibeck D G, Giles B L, et al. The substructure of a flux transfer event observed by the MMS spacecraft. Geophys Res Lett, 2016, 43: 9434–9443

    Article  Google Scholar 

  7. Pu Z Y, Raeder J, Zhong J, et al. Magnetic topologies of an in vivo FTE observed by Double Star/TC-1 at Earth’s magnetopause. Geophys Res Lett, 2013, 40: 3502–3506

    Article  Google Scholar 

  8. Lv L Q, Pu Z Y, Xie L. Multiple magnetic topologies in flux transfer events: THEMIS measurements. Sci China Tech Sci, 2016, 59: 1283–1293

    Article  Google Scholar 

  9. Wang R, Lu Q, Nakamura R, et al. Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat Phys, 2015, 12: 263–267

    Article  Google Scholar 

  10. Slavin J A, Lepping R P, Gjerloev J, et al. Geotail observations of magnetic flux ropes in the plasma sheet. J Geophys Res, 2003, 108: 1015

    Article  Google Scholar 

  11. Yang Y Y, Shen C, Zhang Y C, et al. The force-free configuration of flux ropes in geomagnetotail: Cluster observations. J Geophys Res-Space Phys, 2014, 119: 6327–6341

    Article  Google Scholar 

  12. Liu W L, Li X, Sarris T, et al. Observation and modeling of the injection observed by THEMIS and LANL satellites during the 23 March 2007 substorm event. J Geophys Res, 2009, 114: A00C18

    Article  Google Scholar 

  13. Tian A M, Shi Q Q, Zong Q G, et al. Analysis of magnetotail flux rope events by ARTEMIS observations. Sci China Tech Sci, 2014, 57: 1010–1019

    Article  Google Scholar 

  14. Fear R C, Milan S E, Fazakerley A N, et al. Simultaneous observations of flux transfer events by THEMIS, Cluster, Double Star, and SuperDARN: Acceleration of FTEs. J Geophys Res, 2009, 114: A10213

    Article  Google Scholar 

  15. Fu H S, Cao J B, Khotyaintsev Y V, et al. Dipolarization fronts as a consequence of transient reconnection: In situ evidence. Geophys Res Lett, 2013, 40: 6023–6027

    Article  Google Scholar 

  16. Zhang J, Chen H, Li Z, et al. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J Geophys Res, 2010, 115: A08229

    Article  Google Scholar 

  17. Vinogradov A A, Vasko I Y, Artemyev A V, et al. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere. Phys Plasmas, 2016, 23: 072901

    Article  Google Scholar 

  18. Zhang Y C, Shen C, Liu Z X, et al. Two different types of plasmoids in the plasma sheet: Cluster multisatellite analysis application. J Geophys Res-Space Phys, 2013, 118: 5437–5444

    Article  Google Scholar 

  19. Zhong J, Pu Z Y, Dunlop M W, et al. Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause. J Geophys Res-Space Phys, 2013, 118: 1904–1911

    Article  Google Scholar 

  20. Farrugia C J, Lavraud B, Torbert R B, et al. Magnetospheric Multiscale Mission observations and non-force free modeling of a flux transfer event immersed in a super-Alfvénic flow. Geophys Res Lett, 2016, 43: 6070–6077

    Article  Google Scholar 

  21. Sonnerup B U Ö, Scheible M. Minimum and maximum variance analysis. In: Paschmann G, Daly P, eds. Analysis Methods for Multispacecraft Data. Netherlands: ISSI/ESA, 1998. 185–220

    Google Scholar 

  22. Rong Z J, Wan W X, Shen C, et al. Method for inferring the axis orientation of cylindrical magnetic flux rope based on single-point measurement. J Geophys Res-Space Phys, 2013, 118: 271–283

    Article  Google Scholar 

  23. Sonnerup B U Ö, Guo M. Magnetopause transects. Geophys Res Lett, 1996, 23: 3679–3682

    Article  Google Scholar 

  24. Hasegawa H, Sonnerup B U Ö, Eriksson S, et al. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth’s magnetopause. Ann Geophys, 2015, 33: 169–184

    Article  Google Scholar 

  25. Hasegawa H, Sonnerup B U Ö, Owen C J, et al. The structure of flux transfer events recovered from Cluster data. Ann Geophys, 2006, 24: 603–618

    Article  Google Scholar 

  26. Hu Q, Qiu J, Krucker S. Magnetic field line lengths inside interplanetary magnetic flux ropes. J Geophys Res-Space Phys, 2015, 120: 5266–5283

    Article  Google Scholar 

  27. Hu Q. The Grad-Shafranov reconstruction in twenty years: 1996–2016. Sci China Earth Sci, 2017, 60: 1466–1494

    Article  Google Scholar 

  28. Lu S W, Zong Q G, Vogiatzis I, et al. Reconstruction of plasmoid and traveling compression region in the near-Earth magnetotail. Sci China Tech Sci, 2015, 58: 330–337

    Article  Google Scholar 

  29. Fu H S, Vaivads A, Khotyaintsev Y V, et al. How to find magnetic nulls and reconstruct field topology with MMS data? J Geophys Res-Space Phys, 2015, 120: 3758–3782

    Article  Google Scholar 

  30. Fu H S, Cao J B, Vaivads A, et al. Identifying magnetic reconnection events using the FOTE method. J Geophys Res-Space Phys, 2016, 121: 1263–1272

    Article  Google Scholar 

  31. Fu H S, Vaivads A, Khotyaintsev Y V, et al. Intermittent energy dissipation by turbulent reconnection. Geophys Res Lett, 2017, 44: 37–43

    Article  Google Scholar 

  32. Burch J L, Moore T E, Torbert R B, et al. Magnetospheric multiscale overview and science objectives. Space Sci Rev, 2016, 199: 5–21

    Article  Google Scholar 

  33. Russell C T, Anderson B J, Baumjohann W, et al. The magnetospheric multiscale magnetometers. Space Sci Rev, 2016, 199: 189–256

    Article  Google Scholar 

  34. Pollock C, Moore T, Jacques A, et al. Fast plasma investigation for magnetospheric multiscale. Space Sci Rev, 2016, 199: 331–406

    Article  Google Scholar 

  35. Torbert R B, Russell C T, Magnes W, et al. The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci Rev, 2016, 199: 105–135

    Article  Google Scholar 

  36. Lindqvist P A, Olsson G, Torbert R B, et al. The spin-plane double probe electric field instrument for MMS. Space Sci Rev, 2016, 199: 137–165

    Article  Google Scholar 

  37. Hasegawa H, Kitamura N, Saito Y, et al. Decay of mesoscale flux transfer events during quasi-continuous spatially extended reconnection at the magnetopause. Geophys Res Lett, 2016, 43: 4755–4762

    Article  Google Scholar 

  38. Huang S Y, Sahraoui F, Retino A, et al. MMS observations of ionscale magnetic island in the magnetosheath turbulent plasma. Geophys Res Lett, 2016, 43: 7850–7858

    Article  Google Scholar 

  39. Roux A, Robert P, Fontaine D, et al. What is the nature of magnetosheath FTEs? J Geophys Res-Space Phys, 2015, 120: 4576–4595

    Article  Google Scholar 

  40. Scholer M. Strong core magnetic fields in magnetopause flux transfer events. Geophys Res Lett, 1988, 15: 748–751

    Article  Google Scholar 

  41. Wang R, Lu Q, Nakamura R, et al. Interaction of magnetic flux ropes via magnetic reconnection observed at the magnetopause. J Geophys Res-Space Phys, 2017, 122: 10436–10447

    Article  Google Scholar 

  42. Chaston C C, Yao Y, Lin N, et al. Ion heating by broadband electromagnetic waves in the magnetosheath and across the magnetopause. J Geophys Res-Space Phys, 2013, 118: 5579–5591

    Article  Google Scholar 

  43. Fu H S, Khotyaintsev Y V, Vaivads A, et al. Energetic electron acceleration by unsteady magnetic reconnection. Nat Phys, 2013, 9: 426–430

    Article  Google Scholar 

  44. Fu H S, Cao J B, Cully C M, et al. Whistler-mode waves inside flux pileup region: Structured or unstructured? J Geophys Res-Space Phys, 2014, 119: 9089–9100

    Article  Google Scholar 

  45. Cao J B, Mazelle C, Belmont G, et al. Oblique ring instability driven by nongyrotropic ions: Application to observations at comet Grigg-Skjellerup. J Geophys Res, 1998, 103: 2055–2067

    Article  Google Scholar 

  46. Cao J B, Wei X H, Duan A Y, et al. Slow magnetosonic waves detected in reconnection diffusion region in the Earth’s magnetotail. J Geophys Res-Space Phys, 2013, 118: 1659–1666

    Article  Google Scholar 

  47. Cao D, Fu H S, Cao J B, et al. MMS observations of whistler waves in electron diffusion region. Geophys Res Lett, 2017, 44: 3954–3962

    Article  Google Scholar 

  48. Wang J, Cao J B, Fu H S, et al. Enhancement of oxygen in the magnetic island associated with dipolarization fronts. J Geophys Res-Space Phys, 2017, 122: 185–193

    Article  Google Scholar 

  49. Fu H S, Khotyaintsev Y V, Vaivads A, et al. Electric structure of dipolarization front at sub-proton scale. Geophys Res Lett, 2012, 39: L06105

    Article  Google Scholar 

  50. Dunlop M W, Balogh A, Glassmeier K H, et al. Four-point Cluster application of magnetic field analysis tools: The Curlometer. J Geophys Res, 2002, 107: 1384

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiShan Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Fu, H., Wang, T. et al. Reconstructing the flux-rope topology using the FOTE method. Sci. China Technol. Sci. 62, 144–150 (2019). https://doi.org/10.1007/s11431-017-9201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9201-1

Keywords

Navigation