Science China Technological Sciences

, Volume 61, Issue 4, pp 535–541 | Cite as

Strain effect on the electronic properties of III-nitride nanosheets: Ab-initio study

  • Farzaneh Ghasemzadeh
  • Faramarz Kanjouri


In this study the structural and electronic properties of III-nitride monolayers XN (X=B, Al, Ga and In) under different percentages of homogeneous and shear strain are investigated using the full potential linearized augmented plane wave within the density functional theory. Geometry optimizations indicate that GaN and InN monolayers get buckled under compressive strain. Our calculations show that the free-strains of these four monolayers have an indirect band gap. By applying compressive biaxial strain, a transition from indirect to direct band gap occurs for GaN and InN, while the character of band gap for BN and AlN is not changed. Under tensile strain, only BN monolayer behaves as direct band gap semiconductor. In addition, when the shear strain is applied, only InN undergoes an indirect to direct band gap transition. Furthermore, the variations of band gap versus strain for III-nitride monolayers have been calculated. When a homogeneous uniform strain, in the range of [−10%, +10%], is applied to the monolayers, the band gap can be tuned for from 3.92 eV to 4.58 eV for BN, from 1.67 eV to 3.46 eV for AlN, from 0.24 eV to 2.79 eV for GaN and from 0.60 eV to 0.90 eV for InN.


III-nitride nanosheets density functional theory band-gap engineering strain-tunable bang-gap 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu K M, Liliental-Weber Z, Walukiewicz W, et al. On the crystalline structure, stoichiometry and band gap of InN thin films. Appl Phys Lett, 2005, 86: 071910CrossRefGoogle Scholar
  2. 2.
    Davydov V Y, Klochikhin A A. Electronic and vibrational states in InN and InxGa1−xN solid solutions. Semiconductors, 2004, 38: 861–898CrossRefGoogle Scholar
  3. 3.
    Belabbes A, Furthmüller J, Bechstedt F. Electronic properties of polar and nonpolar InN surfaces: A quasiparticle picture. Phys Rev B, 2011, 84: 205304CrossRefGoogle Scholar
  4. 4.
    Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors. J Appl Phys, 2003, 94: 3675–3696CrossRefGoogle Scholar
  5. 5.
    Wu J. When group-III nitrides go infrared: New properties and perspectives. J Appl Phys, 2009, 106: 011101CrossRefGoogle Scholar
  6. 6.
    Topsakal M, Aktürk E, Ciraci S. First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys Rev B, 2009, 79: 115442CrossRefGoogle Scholar
  7. 7.
    Academy S. The Nobel Prize in Physics 2014. http://www.nobelprize. org/nobel_prizes/physics/laureates/2014/Google Scholar
  8. 8.
    Finland T A. The Millenium Technology Prize 2006. millennium-technology-prize/winner-2006/Google Scholar
  9. 9.
    Vogel D, Krüger P, Pollmann J. Structural and electronic properties of group-III nitrides. Phys Rev B, 1997, 55: 12836–12839CrossRefGoogle Scholar
  10. 10.
    Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photon, 2016, 10: 262–266CrossRefGoogle Scholar
  11. 11.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  12. 12.
    Vogt P, De Padova P, Quaresima C, et al. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett, 2012, 108: 155501CrossRefGoogle Scholar
  13. 13.
    Liu Z L, Wang M X, Liu C, et al. The fate of the 23×23R (30°) silicene phase on Ag(111). APL Mater, 2014, 2: 092513CrossRefGoogle Scholar
  14. 14.
    Fukaya Y, Matsuda I, Feng B, et al. Asymmetric structure of germanene on an Al(111) surface studied by total-reflection high-energy positron diffraction. 2D Mater, 2016, 3: 035019CrossRefGoogle Scholar
  15. 15.
    Zhang L, Bampoulis P, van Houselt A, et al. Two-dimensional Dirac signature of germanene. Appl Phys Lett, 2015, 107: 111605CrossRefGoogle Scholar
  16. 16.
    Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150CrossRefGoogle Scholar
  17. 17.
    Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102: 10451–10453CrossRefGoogle Scholar
  18. 18.
    Nagashima A, Tejima N, Gamou Y, et al. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys Rev B, 1995, 51: 4606–4613CrossRefGoogle Scholar
  19. 19.
    Feng B, Zhang J, Zhong Q, et al. Experimental realization of twodimensional boron sheets. Nat Chem, 2016, 8: 563–568CrossRefGoogle Scholar
  20. 20.
    Alamé S, Quezada A N, Skuridina D, et al. Preparation and structure of ultra-thin GaN (0001) layers on In0.11Ga0.89N-single quantum wells. Mater Sci Semicond Process, 2016, 55: 7–11CrossRefGoogle Scholar
  21. 21.
    Al Balushi Z Y, Wang K, Ghosh R K, et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat Mater, 2016, 15: 1166–1171CrossRefGoogle Scholar
  22. 22.
    Tsipas P, Kassavetis S, Tsoutsou D, et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111). Appl Phys Lett, 2013, 103: 251605CrossRefGoogle Scholar
  23. 23.
    Song L, Ci L, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10: 3209–3215CrossRefGoogle Scholar
  24. 24.
    Ni Z H, Yu T, Lu Y H, et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano, 2008, 2: 2301–2305CrossRefGoogle Scholar
  25. 25.
    Choi S M, Jhi S H, Son Y W. Effects of strain on electronic properties of graphene. Phys Rev B, 2010, 81: 081407RCrossRefGoogle Scholar
  26. 26.
    Şahin H, Cahangirov S, Topsakal M, et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: Firstprinciples calculations. Phys Rev B, 2009, 80: 155453CrossRefGoogle Scholar
  27. 27.
    Onen A, Kecik D, Durgun E, et al. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids. Phys Rev B, 2016, 93: 085431CrossRefGoogle Scholar
  28. 28.
    Zhuang H L, Singh A K, Hennig R G. Computational discovery of single-layer III-V materials. Phys Rev B, 2013, 87: 165415CrossRefGoogle Scholar
  29. 29.
    Jalilian J, Naseri M, Safari S, et al. Tuning of the electronic and optical properties of single-layer indium nitride by strain and stress. Physica E, 2016, 83: 372–377CrossRefGoogle Scholar
  30. 30.
    Liu P, De Sarkar A, Ahuja R. Shear strain induced indirect to direct transition in band gap in AlN monolayer nanosheet. Comp Mater Sci, 2014, 86: 206–210CrossRefGoogle Scholar
  31. 31.
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  32. 32.
    Jalilian J, Safari M. Tuning of the electronic and optical properties of single-layer boron nitride by strain and stress. Diamond Relat Mater, 2016, 66: 163–170CrossRefGoogle Scholar
  33. 33.
    Le M Q. Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. Jnl Comp Theo Nano, 2014, 11: 1458–1464CrossRefGoogle Scholar
  34. 34.
    Li L H, Chen Y, Behan G, et al. Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J Mater Chem, 2011, 21: 11862CrossRefGoogle Scholar
  35. 35.
    Zhang C W, Wang P J. Tuning electronic and magnetic properties of AlN nanosheets with hydrogen and fluorine: Firstprinciples prediction. Phys Lett A, 2011, 375: 3583–3587CrossRefGoogle Scholar
  36. 36.
    Mansurov V, Malin T, Galitsyn Y, et al. Graphene-like AlN layer formation on (111)Si surface by ammonia molecular beam epitaxy. J Cryst Growth, 2015, 428: 93–97CrossRefGoogle Scholar
  37. 37.
    Chen Q, Hu H, Chen X, et al. Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations. Appl Phys Lett, 2011, 98: 053102CrossRefGoogle Scholar
  38. 38.
    Ren M, Li M, Zhang C, et al. First-principles study on the electronic and magnetic properties of InN nanosheets doped with 2p elements. Physica E, 2015, 67: 1–6CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of PhysicsKharazmi UniversityTehranIran

Personalised recommendations