Science China Technological Sciences

, Volume 60, Issue 3, pp 419–424 | Cite as

Ultralow frequency wave characteristics extracted from particle data: Application of IGSO observations

  • Li Li
  • XuZhi Zhou
  • QiuGang Zong
  • XingRan Chen
  • Hong Zou
  • Jie Ren
  • YiXin Hao
  • XianGuo Zhang


Interaction between ultralow frequency (ULF) waves and charged particles plays an important role in the acceleration of particles in the Van Allen radiation belts. The strong wave-particle interaction predicts an energy-dependent observational signature of particle flux variations during different stages of the ULF wave evolution. In this paper, we find that the energetic particle data newly available from an IGSO spacecraft are quite consistent with theoretical predictions, which enables the application of a best-fit procedure to quantitatively extract key parameters of the ULF waves from the particle data. The general agreement between observations and the best-fit results validates the scenario of wave-particle drift resonance within the entire ULF life span, and provides a new technique to understand the ULF wave characteristics in the absence of electromagnetic field data. We also examine the minor differences between observations and the best-fit results, and propose that the differences may result from a longitudinal dependence of the ULF wave power to be considered in a future study.


ultralow frequency waves wave-particle interactions drift resonance ULF wave characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cummings W D, O’Sullivan R J, Coleman Jr. P J. Standing Alfvén waves in the magnetosphere. J Geophys Res, 1969, 74: 778–793CrossRefGoogle Scholar
  2. 2.
    Chen L, Hasegawa A. A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. J Geophys Res, 1974, 79: 1024–1032CrossRefGoogle Scholar
  3. 3.
    Southwood D J. Some features of field line resonances in the magnetosphere. Planet Space Sci, 1974, 22: 483–491CrossRefGoogle Scholar
  4. 4.
    Takahashi K, McPherron R L. Standing hydromagnetic oscillations in the magnetosphere. Planet Space Sci, 1984, 32: 1343–1359CrossRefGoogle Scholar
  5. 5.
    Kivelson M G, Southwood D J. Resonant ULF waves: A new interpretation. Geophys Res Lett, 1985, 12: 49–52CrossRefGoogle Scholar
  6. 6.
    Anderson B J, Engebretson M J, Rounds S P, et al. A statistical study of Pc 3–5 pulsations observed by the AMPTE/CCE Magnetic Fields Experiment, 1. Occurrence distributions. J Geophys Res, 1990, 95: 10495–10523CrossRefGoogle Scholar
  7. 7.
    Zong Q G, Zhou X Z, Wang Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204Google Scholar
  8. 8.
    Mann I R, Lee E A, Claudepierre S G, et al. Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts. Nat Commun, 2013, 4: 2795Google Scholar
  9. 9.
    Southwood D J, Kivelson M G. Charged particle behavior in lowfrequency geomagnetic pulsations 1. Transverse waves. J Geophys Res, 1981, 86: 5643–5655CrossRefGoogle Scholar
  10. 10.
    Southwood D J, Kivelson M G. Charged particle behavior in lowfrequency geomagnetic pulsations, 2. Graphical approach. J Geophys Res, 1982, 87: 1707–1710CrossRefGoogle Scholar
  11. 11.
    Zong Q G, Zhou X Z, Li X, et al. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12105CrossRefGoogle Scholar
  12. 12.
    Claudepierre S G, Mann I R, Takahashi K, et al. Van Allen Probes observation of localized drift resonance between poloidal mode ultralow frequency waves and 60 keV electrons. Geophys Res Lett, 2013, 40: 4491–4497CrossRefGoogle Scholar
  13. 13.
    Dai L, Takahashi K, Wygant J R, et al. Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction. Geophys Res Lett, 2013, 40: 4127–4132CrossRefGoogle Scholar
  14. 14.
    Zhou X Z, Wang Z H, Zong Q G, et al. Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts. Geophys Res Lett, 2015, 42: 6199–6204CrossRefGoogle Scholar
  15. 15.
    Glassmeier K H, Volpers H, Baumjohann W. Ionospheric Joule dissipation as a damping mechanism for high latitude ULF pulsations: Observational evidence. Planet Space Sci, 1984, 32: 1463–1466CrossRefGoogle Scholar
  16. 16.
    Shen X C, Zong Q G, Shi Q Q, et al. Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. J Geophys Res-Space Phys, 2015, 120: 7179–7190CrossRefGoogle Scholar
  17. 17.
    Zhou X Z, Wang Z H, Zong Q G, et al. Charged particle behavior in the growth and damping stages of ultralow frequency waves: Theory and Van Allen Probes observations. J Geophys Res Space Phys, 2016, 121: 3254–3263CrossRefGoogle Scholar
  18. 18.
    Schulz M, Lanzerotti L J. Particle Diffusion in the Radiation Belts. Physics and Chemistry in Space 7. New York: Springer, 1974, 7: 215Google Scholar
  19. 19.
    Zong Q G, Hao Y X, Zou H, et al. Radial propagation of magnetospheric substorm-injected energetic electrons observed using a BD-IES instrument and Van Allen Probes. Sci China Earth Sci, 2016, 59: 1508–1516CrossRefGoogle Scholar
  20. 20.
    Zou H, Luo L, Li C F, et al. Angular response of ‘pin-hole’ imaging structure measured by collimated β source. Sci China Tech Sci, 2013, 56: 2675–2680CrossRefGoogle Scholar
  21. 21.
    Luo L, Zou H, Zong Q G, et al. Anti-proton contamination design of the imaging energetic electron spectrometer based on Geant4 simulation. Sci China Tech Sci, 2015, 58: 1385–1391CrossRefGoogle Scholar
  22. 22.
    Chen X R, Zong Q G, Zhou X Z, et al. Van Allen Probes observation of a 360° phase shift in the flux modulation of injected electrons by ULF waves. Geophys Res Lett, 2016, in pressGoogle Scholar
  23. 23.
    Liu W, Sarris T E, Li X, et al. Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: A statistical study. J Geophys Res, 2009, 114: A12206CrossRefGoogle Scholar
  24. 24.
    Liu W, Tu W, Li X, et al. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophys Res Lett, 2016, 43: 1023–1030CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Li Li
    • 1
    • 2
  • XuZhi Zhou
    • 1
  • QiuGang Zong
    • 1
  • XingRan Chen
    • 1
  • Hong Zou
    • 1
  • Jie Ren
    • 1
  • YiXin Hao
    • 1
  • XianGuo Zhang
    • 3
  1. 1.Institute of Space Physics and Applied TechnologyPeking UniversityBeijingChina
  2. 2.College of AstronauticsNanjing University of Aeronautics and AstronauticsNanjingChina
  3. 3.State Key Laboratory of Space Weather, National Space Science CenterChinese Academy of SciencesBeijingChina

Personalised recommendations