Science China Technological Sciences

, Volume 60, Issue 3, pp 385–398 | Cite as

Optimization of uncertain acoustic metamaterial with Helmholtz resonators based on interval model

  • BaiZhan Xia
  • Yuan Qin
  • Ning Chen
  • DeJie Yu
  • Chao Jiang


Uncertainties existing in the acoustic metamaterial may strongly affect its unusual properties. Aiming at this actuality, the interval model is introduced to treat with uncertainties existing in the acoustic metamaterial with Helmholtz resonators. Frequency intervals in which the sound intensity transmission coefficients are certainly less than the required value and the effective bulk moduli are certainly negative are defined as conservative approximations. Frequency intervals in which the sound intensity transmission coefficients may be less than the required value and the effective bulk moduli may be negative are defined as unsafe approximations. The proportion of the conservative approximation and the unsafe approximation is defined as an approximate precision. Based on the quantification of uncertainties of the sound intensity transmission coefficients and the negative effective bulk moduli, an optimization model for the interval acoustic metamaterial with Helmholtz resonators is constructed. Numerical results showed that even suffering from effects of interval parameters, unusual properties of the optimized acoustic metamaterial (such as the bandgap of the sound transmission and the negative effective bulk modulus) could be improved.


acoustic metamaterial sound intensity transmission coefficient negative effective bulk modulus interval model optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Popa B I, Zigoneanu L, Cummer S A. Experimental acoustic ground cloak in air. Phys Rev Lett, 2011, 106: 253901CrossRefGoogle Scholar
  2. 2.
    Deng K, Ding Y, He Z, et al. Theoretical study of subwavelength imaging by acoustic metamaterial slabs. J Appl Phys, 2009, 105: 124909CrossRefGoogle Scholar
  3. 3.
    Deckers E, Claeys C, Atak O, et al. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions. J Comp Phys, 2016, 312: 115–138MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Xia B, Dai H, Yu D. Symmetry-broken metamaterial for blocking, cloaking, and supertunneling of sound in a subwavelength scale. Appl Phys Lett, 2016, 108: 251902CrossRefGoogle Scholar
  5. 5.
    Atak O, Huybrechs D, Pluymers B, et al. The design of Helmholtz resonator based acoustic lenses by using the symmetric multi-level wave based method and genetic algorithms. J Sound Vib, 2014, 333: 3367–3381CrossRefGoogle Scholar
  6. 6.
    Zhu R, Liu X N, Hu G K, et al. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat Commun, 2014, 5: 5510CrossRefGoogle Scholar
  7. 7.
    Langfeldt F, Gleine W, von Estorff O. Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses. J Sound Vib, 2015, 349: 315–329CrossRefGoogle Scholar
  8. 8.
    Langfeldt F, Riecken J, Gleine W, et al. A membrane-type acoustic metamaterial with adjustable acoustic properties. J Sound Vib, 2016, 373: 1–18CrossRefGoogle Scholar
  9. 9.
    Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science, 2000, 289: 1734–1736CrossRefGoogle Scholar
  10. 10.
    Goffaux C, Sánchez-Dehesa J, Yeyati A L, et al. Evidence of fano-like interference phenomena in locally resonant materials. Phys Rev Lett, 2002, 88: 225502CrossRefGoogle Scholar
  11. 11.
    Ding Y, Liu Z, Qiu C, et al. Metamaterial with simultaneously negative bulk modulus and mass density. Phys Rev Lett, 2007, 99: 093904CrossRefGoogle Scholar
  12. 12.
    Wu Y, Lai Y, Zhang Z Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys Rev Lett, 2011, 107: 105506CrossRefGoogle Scholar
  13. 13.
    Fang N, Xi D, Xu J, et al. Ultrasonic metamaterials with negative modulus. Nat Mater, 2006, 5: 452–456CrossRefGoogle Scholar
  14. 14.
    Yang Z, Mei J, Yang M, et al. Membrane-type acoustic metamaterial with negative dynamic mass. Phys Rev Lett, 2008, 101: 204301CrossRefGoogle Scholar
  15. 15.
    Lee S H, Park C M, Seo Y M, et al. Composite acoustic medium with simultaneously negative density and modulus. Phys Rev Lett, 2010, 104: 054301CrossRefGoogle Scholar
  16. 16.
    Yang M, Ma G, Yang Z, et al. Coupled membranes with doubly negative mass density and bulk modulus. Phys Rev Lett, 2013, 110: 134301CrossRefGoogle Scholar
  17. 17.
    Meidani M, Kim E, Li F, et al. Tunable evolutions of wave modes and bandgaps in quasi-1D cylindrical phononic crystals. J Sound Vib, 2015, 334: 270–281CrossRefGoogle Scholar
  18. 18.
    Kim E, Yang J. Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps. J Mech Phys Solids, 2014, 71: 33–45CrossRefMATHGoogle Scholar
  19. 19.
    Zhu Z W, Deng Z C. Tailoring of interiorly resonant band gaps in structurally square re-entrant honeycombs. J Sound Vib, 2016, 372: 181–191CrossRefGoogle Scholar
  20. 20.
    Li J B, Wang Y S, Zhang C. Tuning of acoustic bandgaps in phononic crystals with Helmholtz resonators. J Vib Acoust, 2013, 135: 031015CrossRefGoogle Scholar
  21. 21.
    Hao L, Ding C, Zhao X. Design of a passive controllable negative modulus metamaterial with a split hollow sphere of multiple holes. J Vib Acoust, 2013, 135: 041008CrossRefGoogle Scholar
  22. 22.
    Romero-Garciá V, Sánchez-Pérez J V, Garcia-Raffi L M, et al. Hole distribution in phononic crystals: Design and optimization. J Acoust Soc Am, 2009, 125: 3774–3783CrossRefGoogle Scholar
  23. 23.
    Romero-García V, Krynkin A, Garcia-Raffi L M, et al. Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial. J Sound Vib, 2013, 332: 184–198CrossRefGoogle Scholar
  24. 24.
    Wang Y F, Wang Y S. Complete bandgap in three-dimensional holey phononic crystals with resonators. J Vib Acoust, 2013, 135: 041009CrossRefGoogle Scholar
  25. 25.
    Xu W, Wang W, Yang T. Multi-objective optimization of layered elastic metamaterials with multiphase microstructures. J Vib Acoust, 2013, 135: 041010CrossRefGoogle Scholar
  26. 26.
    Acar G, Yilmaz C. Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures. J Sound Vib, 2013, 332: 6389–6404CrossRefGoogle Scholar
  27. 27.
    Yuksel O, Yilmaz C. Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms. J Sound Vib, 2015, 355: 232–245CrossRefGoogle Scholar
  28. 28.
    Kang Z, Luo Y. Reliability-based structural optimization with probability and convex set hybrid models. Struct Multidisc Optim, 2010, 42: 89–102CrossRefGoogle Scholar
  29. 29.
    Kang Z, Luo Y, Li A. On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters. Struct Safety, 2011, 33: 196–205CrossRefGoogle Scholar
  30. 30.
    Xia B, Yu D. Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters. J Sound Vib, 2012, 331: 3774–3790CrossRefGoogle Scholar
  31. 31.
    Xia B, Yu D, Liu J. Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters. J Fluids Struct, 2013, 38: 146–163CrossRefGoogle Scholar
  32. 32.
    Gao W, Song C, Tin-Loi F. Probabilistic interval analysis for structures with uncertainty. Struct Safety, 2010, 32: 191–199CrossRefGoogle Scholar
  33. 33.
    Wu D, Gao W, Tangaramvong S, et al. Robust stability analysis of structures with uncertain parameters using mathematical programming approach. Int J Numer Meth Eng, 2014, 100: 720–745MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wu D, Gao W, Song C, et al. Probabilistic interval stability assessment for structures with mixed uncertainty. Struct Safety, 2016, 58: 105–118CrossRefGoogle Scholar
  35. 35.
    Li F, Luo Z, Rong J, et al. Interval multi-objective optimisation of structures using adaptive Kriging approximations. Comp Struct, 2013, 119: 68–84CrossRefGoogle Scholar
  36. 36.
    Hu W, Azarm S, Almansoori A. New approximation assisted multiobjective collaborative robust optimization (new AA-McRO) under interval uncertainty. Struct Multidisc Optim, 2013, 47: 19–35MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Mortazavi A, Azarm S, Gabriel S A. Adaptive gradient-assisted robust design optimization under interval uncertainty. Eng Optim, 2013, 45: 1287–1307MathSciNetCrossRefGoogle Scholar
  38. 38.
    Hurtado J E, Alvarez D A. The encounter of interval and probabilistic approaches to structural reliability at the design point. Comp Methods Appl Mech Eng, 2012, 225-228: 74–94MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Tangaramvong S, Wu D, Gao W, et al. Response bounds of elastic structures in the presence of interval uncertainties. J Struct Eng, 2015, 141: 04015046CrossRefGoogle Scholar
  40. 40.
    Wu J, Luo Z, Zhang Y, et al. Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int J Numer Meth Eng, 2013, 95: 608–630MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Wu J, Gao J, Luo Z, et al. Robust topology optimization for structures under interval uncertainty. Adv Eng Software, 2016, 99: 36–48CrossRefGoogle Scholar
  42. 42.
    Yang C, Tangaramvong S, Gao W, et al. Interval elastoplastic analysis of structures. Comp Struct, 2015, 151: 1–10CrossRefGoogle Scholar
  43. 43.
    Zi B, Zhou B. A modified hybrid uncertain analysis method for dynamic response field of the LSOAAC with random and interval parameters. J Sound Vib, 2016, 374: 111–137CrossRefGoogle Scholar
  44. 44.
    Han X, Jiang C, Liu L X, et al. Response-surface-based structural reliability analysis with random and interval mixed uncertainties. Sci China Tech Sci, 2014, 57: 1322–1334CrossRefGoogle Scholar
  45. 45.
    Li L Y, Lu Z Z, Li W. State dependent parameter method for importance analysis in the presence of epistemic and aleatory uncertainties. Sci China Tech Sci, 2012, 55: 1608–1617CrossRefGoogle Scholar
  46. 46.
    Du X. Reliability-based design optimization with dependent interval variables. Int J Numer Meth Eng, 2012, 91: 218–228MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Xia B, Lü H, Yu D, et al. Reliability-based design optimization of structural systems under hybrid probabilistic and interval model. Comp Struct, 2015, 160: 126–134CrossRefGoogle Scholar
  48. 48.
    Kang Z, Bai S. On robust design optimization of truss structures with bounded uncertainties. Struct Multidisc Optim, 2013, 47: 699–714MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Doltsinis I, Kang Z. Robust design of structures using optimization methods. Comp Methods Appl Mech Eng, 2004, 193: 2221–2237CrossRefMATHGoogle Scholar
  50. 50.
    Kinsler L E. Fundamentals of Acoustic (3th ed). New York: John Wiley and Sons, 1982Google Scholar
  51. 51.
    Wang Y, Gao J, Luo Z, et al. Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials. Eng Optim, 2016, 49: 22–42MathSciNetCrossRefGoogle Scholar
  52. 52.
    Wang Y, Luo Z, Zhang N, et al. Topological shape optimization of multifunctional tissue engineering scaffolds with level set method. Struct Multidisc Optim, 2016, 54: 333–347MathSciNetCrossRefGoogle Scholar
  53. 53.
    Wang Y, Luo Z, Zhang N, et al. Topological design for mechanical metamaterials using a multiphase level set method. Struct Multidisc Optim, 2016, 54: 952–937MathSciNetGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • BaiZhan Xia
    • 1
  • Yuan Qin
    • 1
  • Ning Chen
    • 1
  • DeJie Yu
    • 1
  • Chao Jiang
    • 1
  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaChina

Personalised recommendations