Science China Technological Sciences

, Volume 60, Issue 3, pp 412–418 | Cite as

Comparisons of JOULE 1 rocket thermospheric wind observations in high latitudes with GITM simulations

  • Yue Deng
  • Miguel F. Larsen
  • Aaron J. Ridley
  • TianYu Zhan


The JOULE sounding rocket 1 experiment was carried out at Poker Flat Research Range in Alaska around 1200 UT on March 27th, 2003 with two instrumented rockets and one chemical tracer rocket. From the released trimethyl aluminum (TMA) trails, neutral wind measurements showed a wind peak at 120 km altitude and a jet structure around it, which were superposed by a vertically propagating wave. Running global ionosphere thermosphere model (GITM) with a stretched grid structure, sub-degree resolution around the JOULE rocket position was applied. Data-model comparison shows that the GITM simulation reproduced the large neutral wind at 120 km altitude. The simulation also shows a strong vertical wind shear below 120 km, which is generally consistent with observation but with a smaller gradient. The primary discrepancies were the wave features below 115 km and the wind gradient above 120 km altitude, which indicates that the wave forcing besides the ion-drag force plays an important role to the neutral dynamics in the lower thermosphere. The comparison between simulations using different high-latitude drivers was also conducted to emphasize the significance of the electrodynamics to the neutral wind. Using assimilative mapping of ionospheric electrodynamics (AMIE) procedure as the high latitude driver produced more accurate neutral wind patterns than using Weimer empirical model.


target tracking parallel vision processor MRID skipping searching image processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emmert J T, Hernandez G, Jarvis M J, et al. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. Highlatitude circulation and interplanetary magnetic field dependence. J Geophys Res Space Phys, 2006, 111, doi: 10.1029/2006JA011949Google Scholar
  2. 2.
    Heppner J P, Maynard N C. Empirical high-latitude electric field models. J Geophys Res, 1987, 92: 4467–4489CrossRefGoogle Scholar
  3. 3.
    Weimer D R. An improved model of ionospheric electric potentials including substorm perturbations and application to the geosphace environment modeling November 24, 1996, event. J Geophys Res, 2001, 106: 407–416CrossRefGoogle Scholar
  4. 4.
    Mikkelsen I S, Larsen M F. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection. J Geophys Res, 1991, 96: 1203–1213CrossRefGoogle Scholar
  5. 5.
    Mikkelsen I S, Larsen M F. Comparisons of spectral thermospheric general circulation model simulations and E and F region chemical release wind observations. J Geophys Res, 1993, 98: 3693–3710CrossRefGoogle Scholar
  6. 6.
    Lu G, Lyons L R, Reiff P H, et al. Characteristics of ionospheric convection and field-aligned current in the dayside cusp region. J Geophys Res, 1995, 100: 11845–11861CrossRefGoogle Scholar
  7. 7.
    Peymirat C, Richmond A D, Roble R G. Neutral wind influence on the electrodynamic coupling between the ionosphere and the magnetosphere. J Geophys Res, 2002, 107, doi: 10.1029/2001JA900106Google Scholar
  8. 8.
    Ridley A J, Richmond A D, Gombosi T I, et al. Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds. J Geophys Res, 2003, 108, doi: 10.1029/2002JA009464Google Scholar
  9. 9.
    Johnson R M. Sondrestrom incoherent scatter radar observations during the lower thermosphere coupling study: September 21–26, 1987. J Geophys Res Space Phys, 1991, 96: 1081–1090CrossRefGoogle Scholar
  10. 10.
    Johnson RM, Luhmann J G, Wickwar V B, et al. Lower-thermospheric winds at high latitude: Chatanika radar observations. Ann Geophys, 1987, 5: 383–404Google Scholar
  11. 11.
    Manson A H, Meek C E, Vincent R A, et al. Comparison between reference atmosphere winds and radar winds from selected locations. Adv Space Res, 1990, 10: 233–243CrossRefGoogle Scholar
  12. 12.
    Lloyd N, Manson A H, McEwen D J, et al. A comparison of middle atmospheric dynamics at Saskatoon (52°N, 107°W) as measured by a medium-frequency radar and a Fabry-Perot interferometer. J Geophys Res, 1990, 95: 7653–7660CrossRefGoogle Scholar
  13. 13.
    Meriwether JW. Studies of thermospheric dynamics with a Fabry Perot interferometer network: A review. J Atmos Solar-Terr Phys, 2006, 68: 1576–1589CrossRefGoogle Scholar
  14. 14.
    Wiens R H, Shepherd G G, Gault W A, et al. Optical measurements of winds in the lower thermosphere. J Geophys Res, 1988, 93: 5973–5980CrossRefGoogle Scholar
  15. 15.
    Killeen T L, Nardi B, Purcell P N, et al. Neutral winds in the lower thermosphere from Dynamics Explorer 2. Geophys Res Lett, 1992, 19: 1093–1096CrossRefGoogle Scholar
  16. 16.
    Richmond A D, Lathuillère C, Vennerstroem S. Winds in the highlatitude lower thermosphere: Dependence on the interplanetary magnetic field. J Geophys Res, 108, doi: 10.1029/2002JA009493Google Scholar
  17. 17.
    Goncharenko L P, Salah J E, Foster J C, et al. Variations in lower thermosphere dynamics at midlatitudes during intense geomagnetic storms. J Geophys Res Space Phys, 2004, 109, doi: 10.1029/2003JA010244Google Scholar
  18. 18.
    Larsen M F. Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements. J Geophys Res Space Phys, 2002, 107, doi: 10.1029/2001JA000218Google Scholar
  19. 19.
    Bates D R. A suggestion regarding the use of rockets to vary the amount of atmospheric sodium. J Geophys Res, 1950, 55: 347–349CrossRefGoogle Scholar
  20. 20.
    Larsen M F, Mikkelsen I S, Meriwether J W, et al. Simultaneous observations of neutral winds and electric fields at spaced locations in the dawn auroral oval. J Geophys Res, 1989, 94: 17235–17243CrossRefGoogle Scholar
  21. 21.
    Mikkelsen I S, Jorgensen T S, Kelley M C, et al. Neutral winds and electric fields in the dusk auroral oval, 1: Measurements. J Geophys Res, 1981, 86: 1513–1524CrossRefGoogle Scholar
  22. 22.
    Mikkelsen I S, Friis-Christensen E, Larsen M F, et al. Simultaneous measurements of the thermospheric wind profile at three separate positions in the dusk auroral oval. J Geophys Res, 1987, 92: 4639–4648CrossRefGoogle Scholar
  23. 23.
    Brinkman D G, Walterscheid R L, Lyons L R, et al. E region neutral winds in the postmidnight diffuse aurora during the Atmospheric Response in Aurora 1 rocket campaign. J Geophys Res, 1995, 100: 17309–17320CrossRefGoogle Scholar
  24. 24.
    Fuller-Rowell T J. A two-dimensional, high-resolution, nested-grid model of the thermosphere, II: Response of the thermosphere to narrow and broad electrodynamic features. J Geophys Res, 1985, 90: 6567–6586CrossRefGoogle Scholar
  25. 25.
    Hernandez G, Roble R G. Simultaneous thermospheric observations during the geomagnetic storm of April 2002 from South Pole and Arrival Heights, Antarctica. Geophys Res Lett, 2003, 30, doi: 10.1029/2003GL016878Google Scholar
  26. 26.
    Mikkelsen I S, Jorgensen T S, Kelley M C, et al. Neutral winds and electric fields in the dust auroral oval, II: Theory and model. J Geophys Res, 1981, 86: 1525–1536CrossRefGoogle Scholar
  27. 27.
    Parish H F, Walterscheid R L, Jones P W, et al. Simulations of the thermospheric response to the diffuse aurora using a three-dimensional high-resolution model. J Geophys Res Space Phys, 2003, 108, doi: 10.1029/2002JA009610Google Scholar
  28. 28.
    Walterscheid R L, Lyons L R. The neutral E region zonal winds during intense postmidnight diffuse aurora: Response to observed particle fluxes. J Geophys Res, 1989, 94: 3703–3712CrossRefGoogle Scholar
  29. 29.
    Nozawa S, Liu H L, Richmond A D, et al. Comparison of the auroral E region neutral winds derived with the European Incoherent Scatter radar and predicted by the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics general circulation model. J Geophys Res, 2001, 106: 24691–24700CrossRefGoogle Scholar
  30. 30.
    Ridley A J, Deng Y, Toth G. The global ionosphere-thermosphere model. J Atmos Sol-Terr Phys, 2006, 68: 839–864CrossRefGoogle Scholar
  31. 31.
    Bahcivan H, Hysell D L, Larsen M F, et al. The 30 MHz imaging radar observations of auroral irregularities during the JOULE campaign. J Geophys Res Space Phys, 2005, 110, doi: 10.1029/2004JA010975Google Scholar
  32. 32.
    Deng Y, Richmond A D, Ridley A J, et al. Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophys Res Lett, 2008, 35, doi: 10.1029/2007GL032182Google Scholar
  33. 33.
    Deng Y, Ridley A J, Wang W. Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation. J Geophys Res Space Phys, 2008, 113, doi: 10.1029/2008JA013081Google Scholar
  34. 34.
    Deng Y, Ridley A J. The role of vertical ion convection in the highlatitude ionospheric plasma distribution. J Geophys Res Space Phys, 2006, 111, doi: 10.1029/2006JA011637Google Scholar
  35. 35.
    Deng Y, Ridley A J. Possible reasons for underestimating joule heating in global models: E field variability, spatial resolution, and vertical velocity. J Geophys Res Space Phys, 2007, 112, doi: 10.1029/2006JA012006Google Scholar
  36. 36.
    Deng Y, Ridley A J. Dependence of neutral winds on convection Efield, solar EUV and auroral particle precipitation at high latitudes. J Geophys Res Space Phys, 2006, 111, doi: 10.1029/2005JA011368Google Scholar
  37. 37.
    Hedin A E. MSIS-86 thermospheric model. J Geophys Res Space Phys, 1987, 92: 4649–4662CrossRefGoogle Scholar
  38. 38.
    Bilitza D. International reference ionosphere 2000. Radio Sci, 2001, 36: 261–275CrossRefGoogle Scholar
  39. 39.
    Rawer K, Bilitza D, Ramakrishnan S. Goals and status of the international reference ionosphere. Rev Geophys, 1978, 16: 177–181CrossRefGoogle Scholar
  40. 40.
    Hedin A. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res Space Phys, 1991, 96: 1159–1172CrossRefGoogle Scholar
  41. 41.
    Liu H L. On the large wind shear and fast meridional transport above the mesopause. Geophys Res Lett, 2007, 34, doi: 10.1029/2006GL028789Google Scholar
  42. 42.
    Larsen M F, Walterscheid R L. Modified geostrophy in the thermosphere. J Geophys Res, 1995, 100: 17321–17330CrossRefGoogle Scholar
  43. 43.
    Zhan T. Observations of neutral wind gradients in the auroral oval during two substorm events. Dissertation of Doctoral Degree. Clemson: Clemson University, 2005Google Scholar
  44. 44.
    Forbes J M, Vial F. Monthly simulations of the solar semidiurnal tide in the mesosphere and lower thermosphere. J Atmos Solar-Terr Phys, 1989, 51: 649–661CrossRefGoogle Scholar
  45. 45.
    Vial F, Forbes J M. Recent progress in tidal modeling. J Atmos Solar-Terr Phys, 1989, 51: 663–671CrossRefGoogle Scholar
  46. 46.
    Hedin A E, Spencer N W, Biondi M A, et al. Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res, 1991, 96: 7657–7688CrossRefGoogle Scholar
  47. 47.
    Weimer D R. A flexible, IMF dependent model of high-latitude electric potential having “space weather” applications. Geophys Res Lett, 1996, 23: 2549–2552CrossRefGoogle Scholar
  48. 48.
    Richmond A D, Kamide Y. Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique. J Geophys Res Space Phys, 1988, 93: 5741–5759CrossRefGoogle Scholar
  49. 49.
    Fuller-Rowell T J, Evans D. Height-integrated Pedersen and Hall conductivity patterns inferred from TIROS-NOAA satellite data. J Geophys Res, 1987, 92: 7606–7618CrossRefGoogle Scholar
  50. 50.
    Kihn E A, Redmon R, Ridley A J, et al. A statistical comparison of the AMIE derived and DMSP-SSIES observed high-latitude ionospheric electric field. J Geophys Res Space Phys, 2006, 111, doi: 10.1029/2005JA011310Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yue Deng
    • 1
  • Miguel F. Larsen
    • 2
  • Aaron J. Ridley
    • 3
  • TianYu Zhan
    • 2
  1. 1.Department of PhysicsUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of PhysicsClemson UniversityClemsonUSA
  3. 3.Center for Space Environment ModelingThe University of MichiganAnn ArborUSA

Personalised recommendations