Skip to main content
Log in

Comparisons of JOULE 1 rocket thermospheric wind observations in high latitudes with GITM simulations

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The JOULE sounding rocket 1 experiment was carried out at Poker Flat Research Range in Alaska around 1200 UT on March 27th, 2003 with two instrumented rockets and one chemical tracer rocket. From the released trimethyl aluminum (TMA) trails, neutral wind measurements showed a wind peak at 120 km altitude and a jet structure around it, which were superposed by a vertically propagating wave. Running global ionosphere thermosphere model (GITM) with a stretched grid structure, sub-degree resolution around the JOULE rocket position was applied. Data-model comparison shows that the GITM simulation reproduced the large neutral wind at 120 km altitude. The simulation also shows a strong vertical wind shear below 120 km, which is generally consistent with observation but with a smaller gradient. The primary discrepancies were the wave features below 115 km and the wind gradient above 120 km altitude, which indicates that the wave forcing besides the ion-drag force plays an important role to the neutral dynamics in the lower thermosphere. The comparison between simulations using different high-latitude drivers was also conducted to emphasize the significance of the electrodynamics to the neutral wind. Using assimilative mapping of ionospheric electrodynamics (AMIE) procedure as the high latitude driver produced more accurate neutral wind patterns than using Weimer empirical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emmert J T, Hernandez G, Jarvis M J, et al. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 2. Highlatitude circulation and interplanetary magnetic field dependence. J Geophys Res Space Phys, 2006, 111, doi: 10.1029/2006JA011949

    Google Scholar 

  2. Heppner J P, Maynard N C. Empirical high-latitude electric field models. J Geophys Res, 1987, 92: 4467–4489

    Article  Google Scholar 

  3. Weimer D R. An improved model of ionospheric electric potentials including substorm perturbations and application to the geosphace environment modeling November 24, 1996, event. J Geophys Res, 2001, 106: 407–416

    Article  Google Scholar 

  4. Mikkelsen I S, Larsen M F. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection. J Geophys Res, 1991, 96: 1203–1213

    Article  Google Scholar 

  5. Mikkelsen I S, Larsen M F. Comparisons of spectral thermospheric general circulation model simulations and E and F region chemical release wind observations. J Geophys Res, 1993, 98: 3693–3710

    Article  Google Scholar 

  6. Lu G, Lyons L R, Reiff P H, et al. Characteristics of ionospheric convection and field-aligned current in the dayside cusp region. J Geophys Res, 1995, 100: 11845–11861

    Article  Google Scholar 

  7. Peymirat C, Richmond A D, Roble R G. Neutral wind influence on the electrodynamic coupling between the ionosphere and the magnetosphere. J Geophys Res, 2002, 107, doi: 10.1029/2001JA900106

    Google Scholar 

  8. Ridley A J, Richmond A D, Gombosi T I, et al. Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds. J Geophys Res, 2003, 108, doi: 10.1029/2002JA009464

    Google Scholar 

  9. Johnson R M. Sondrestrom incoherent scatter radar observations during the lower thermosphere coupling study: September 21–26, 1987. J Geophys Res Space Phys, 1991, 96: 1081–1090

    Article  Google Scholar 

  10. Johnson RM, Luhmann J G, Wickwar V B, et al. Lower-thermospheric winds at high latitude: Chatanika radar observations. Ann Geophys, 1987, 5: 383–404

    Google Scholar 

  11. Manson A H, Meek C E, Vincent R A, et al. Comparison between reference atmosphere winds and radar winds from selected locations. Adv Space Res, 1990, 10: 233–243

    Article  Google Scholar 

  12. Lloyd N, Manson A H, McEwen D J, et al. A comparison of middle atmospheric dynamics at Saskatoon (52°N, 107°W) as measured by a medium-frequency radar and a Fabry-Perot interferometer. J Geophys Res, 1990, 95: 7653–7660

    Article  Google Scholar 

  13. Meriwether JW. Studies of thermospheric dynamics with a Fabry Perot interferometer network: A review. J Atmos Solar-Terr Phys, 2006, 68: 1576–1589

    Article  Google Scholar 

  14. Wiens R H, Shepherd G G, Gault W A, et al. Optical measurements of winds in the lower thermosphere. J Geophys Res, 1988, 93: 5973–5980

    Article  Google Scholar 

  15. Killeen T L, Nardi B, Purcell P N, et al. Neutral winds in the lower thermosphere from Dynamics Explorer 2. Geophys Res Lett, 1992, 19: 1093–1096

    Article  Google Scholar 

  16. Richmond A D, Lathuillère C, Vennerstroem S. Winds in the highlatitude lower thermosphere: Dependence on the interplanetary magnetic field. J Geophys Res, 108, doi: 10.1029/2002JA009493

  17. Goncharenko L P, Salah J E, Foster J C, et al. Variations in lower thermosphere dynamics at midlatitudes during intense geomagnetic storms. J Geophys Res Space Phys, 2004, 109, doi: 10.1029/2003JA010244

    Google Scholar 

  18. Larsen M F. Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements. J Geophys Res Space Phys, 2002, 107, doi: 10.1029/2001JA000218

    Google Scholar 

  19. Bates D R. A suggestion regarding the use of rockets to vary the amount of atmospheric sodium. J Geophys Res, 1950, 55: 347–349

    Article  Google Scholar 

  20. Larsen M F, Mikkelsen I S, Meriwether J W, et al. Simultaneous observations of neutral winds and electric fields at spaced locations in the dawn auroral oval. J Geophys Res, 1989, 94: 17235–17243

    Article  Google Scholar 

  21. Mikkelsen I S, Jorgensen T S, Kelley M C, et al. Neutral winds and electric fields in the dusk auroral oval, 1: Measurements. J Geophys Res, 1981, 86: 1513–1524

    Article  Google Scholar 

  22. Mikkelsen I S, Friis-Christensen E, Larsen M F, et al. Simultaneous measurements of the thermospheric wind profile at three separate positions in the dusk auroral oval. J Geophys Res, 1987, 92: 4639–4648

    Article  Google Scholar 

  23. Brinkman D G, Walterscheid R L, Lyons L R, et al. E region neutral winds in the postmidnight diffuse aurora during the Atmospheric Response in Aurora 1 rocket campaign. J Geophys Res, 1995, 100: 17309–17320

    Article  Google Scholar 

  24. Fuller-Rowell T J. A two-dimensional, high-resolution, nested-grid model of the thermosphere, II: Response of the thermosphere to narrow and broad electrodynamic features. J Geophys Res, 1985, 90: 6567–6586

    Article  Google Scholar 

  25. Hernandez G, Roble R G. Simultaneous thermospheric observations during the geomagnetic storm of April 2002 from South Pole and Arrival Heights, Antarctica. Geophys Res Lett, 2003, 30, doi: 10.1029/2003GL016878

    Google Scholar 

  26. Mikkelsen I S, Jorgensen T S, Kelley M C, et al. Neutral winds and electric fields in the dust auroral oval, II: Theory and model. J Geophys Res, 1981, 86: 1525–1536

    Article  Google Scholar 

  27. Parish H F, Walterscheid R L, Jones P W, et al. Simulations of the thermospheric response to the diffuse aurora using a three-dimensional high-resolution model. J Geophys Res Space Phys, 2003, 108, doi: 10.1029/2002JA009610

    Google Scholar 

  28. Walterscheid R L, Lyons L R. The neutral E region zonal winds during intense postmidnight diffuse aurora: Response to observed particle fluxes. J Geophys Res, 1989, 94: 3703–3712

    Article  Google Scholar 

  29. Nozawa S, Liu H L, Richmond A D, et al. Comparison of the auroral E region neutral winds derived with the European Incoherent Scatter radar and predicted by the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics general circulation model. J Geophys Res, 2001, 106: 24691–24700

    Article  Google Scholar 

  30. Ridley A J, Deng Y, Toth G. The global ionosphere-thermosphere model. J Atmos Sol-Terr Phys, 2006, 68: 839–864

    Article  Google Scholar 

  31. Bahcivan H, Hysell D L, Larsen M F, et al. The 30 MHz imaging radar observations of auroral irregularities during the JOULE campaign. J Geophys Res Space Phys, 2005, 110, doi: 10.1029/2004JA010975

    Google Scholar 

  32. Deng Y, Richmond A D, Ridley A J, et al. Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophys Res Lett, 2008, 35, doi: 10.1029/2007GL032182

    Google Scholar 

  33. Deng Y, Ridley A J, Wang W. Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation. J Geophys Res Space Phys, 2008, 113, doi: 10.1029/2008JA013081

    Google Scholar 

  34. Deng Y, Ridley A J. The role of vertical ion convection in the highlatitude ionospheric plasma distribution. J Geophys Res Space Phys, 2006, 111, doi: 10.1029/2006JA011637

    Google Scholar 

  35. Deng Y, Ridley A J. Possible reasons for underestimating joule heating in global models: E field variability, spatial resolution, and vertical velocity. J Geophys Res Space Phys, 2007, 112, doi: 10.1029/2006JA012006

    Google Scholar 

  36. Deng Y, Ridley A J. Dependence of neutral winds on convection Efield, solar EUV and auroral particle precipitation at high latitudes. J Geophys Res Space Phys, 2006, 111, doi: 10.1029/2005JA011368

    Google Scholar 

  37. Hedin A E. MSIS-86 thermospheric model. J Geophys Res Space Phys, 1987, 92: 4649–4662

    Article  Google Scholar 

  38. Bilitza D. International reference ionosphere 2000. Radio Sci, 2001, 36: 261–275

    Article  Google Scholar 

  39. Rawer K, Bilitza D, Ramakrishnan S. Goals and status of the international reference ionosphere. Rev Geophys, 1978, 16: 177–181

    Article  Google Scholar 

  40. Hedin A. Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res Space Phys, 1991, 96: 1159–1172

    Article  Google Scholar 

  41. Liu H L. On the large wind shear and fast meridional transport above the mesopause. Geophys Res Lett, 2007, 34, doi: 10.1029/2006GL028789

    Google Scholar 

  42. Larsen M F, Walterscheid R L. Modified geostrophy in the thermosphere. J Geophys Res, 1995, 100: 17321–17330

    Article  Google Scholar 

  43. Zhan T. Observations of neutral wind gradients in the auroral oval during two substorm events. Dissertation of Doctoral Degree. Clemson: Clemson University, 2005

    Google Scholar 

  44. Forbes J M, Vial F. Monthly simulations of the solar semidiurnal tide in the mesosphere and lower thermosphere. J Atmos Solar-Terr Phys, 1989, 51: 649–661

    Article  Google Scholar 

  45. Vial F, Forbes J M. Recent progress in tidal modeling. J Atmos Solar-Terr Phys, 1989, 51: 663–671

    Article  Google Scholar 

  46. Hedin A E, Spencer N W, Biondi M A, et al. Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res, 1991, 96: 7657–7688

    Article  Google Scholar 

  47. Weimer D R. A flexible, IMF dependent model of high-latitude electric potential having “space weather” applications. Geophys Res Lett, 1996, 23: 2549–2552

    Article  Google Scholar 

  48. Richmond A D, Kamide Y. Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique. J Geophys Res Space Phys, 1988, 93: 5741–5759

    Article  Google Scholar 

  49. Fuller-Rowell T J, Evans D. Height-integrated Pedersen and Hall conductivity patterns inferred from TIROS-NOAA satellite data. J Geophys Res, 1987, 92: 7606–7618

    Article  Google Scholar 

  50. Kihn E A, Redmon R, Ridley A J, et al. A statistical comparison of the AMIE derived and DMSP-SSIES observed high-latitude ionospheric electric field. J Geophys Res Space Phys, 2006, 111, doi: 10.1029/2005JA011310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Deng.

Additional information

This work was supported by the National Science Foundation (NSF) (Grant No. ATM0955629) and Air Force Office of Scientific Research (Grant No. 1210429).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Larsen, M.F., Ridley, A.J. et al. Comparisons of JOULE 1 rocket thermospheric wind observations in high latitudes with GITM simulations. Sci. China Technol. Sci. 60, 412–418 (2017). https://doi.org/10.1007/s11431-016-0471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-0471-8

Keywords

Navigation