Science China Technological Sciences

, Volume 60, Issue 3, pp 459–466 | Cite as

Simulation analysis of heavy-ion-induced single-event response for nanoscale bulk-Si FinFETs and conventional planar devices

  • JunTing YuEmail author
  • ShuMing Chen
  • JianJun Chen
  • PengCheng Huang


FinFET technologies are becoming the mainstream process as technology scales down. Based on 28-nm bulk-Si FinFETs and planar transistors, three-dimensional technology computer-aided design (TCAD) simulations are performed to investigate the charge collection mechanisms and single-event transient (SET) pulse widths for nanoscale devices. Simulation results show that charge collection and SET pulse widths for FinFETs are smaller than those of the planar device. An overall analysis indicates that for P-hits, the reduced charge collection in p-FinFET is induced mainly by the narrow sensitivity drain volumes when ion linear energy transfer (LETs) less than 20 MeV cm2/mg; however, the parasitic bipolar amplification effect presents an important effect on the charge reduction for higher ion LETs. An in-depth analysis shows that the reduced bipolar amplification effect in p-FinFET is owing to the conduction channel (fin body) rather than source/drain region. Due to a parasitic reversed bipolar effect, the single-event response for N-hit is less sensitive than that for P-hit. Moreover, comparisons of the temperature dependence of SET pulse width in both FinFETs and planar devices is carried out, which indicate that the SET pulse width in PMOS shows stronger temperature dependence than that in p-FinFET. This gives a new insight into the single-event effects (SEE) in FinFETs, which can provide guidelines for future radiation-hardened applications of FinFET-based circuits.


charge collection bipolar amplification reversed bipolar effect single-event effect (SEE) single-event transient (SET) FinFET planar device 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colinge J P. FinFETs and Other Multi-Gate Transistors. New York: Springer, 2008CrossRefGoogle Scholar
  2. 2.
    Fossum J G, Trivedl V P. Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs. New York: Cambridge University Press, 2013CrossRefGoogle Scholar
  3. 3.
    LaPedus M. Intel tips 22-nm tri-gate, but mobile is MIA. Scholar
  4. 4.
    Ball D R, Alles M L, Schrimpf R D, et al. Comparing single event upset sensitivity of bulk vs. SOI based FinFET SRAM cells using TCAD simulations. In: Proceedings of IEEE International SOI Conference. San Diego: IEEE, 2010Google Scholar
  5. 5.
    El-Mamouni F, Zhang E X, Pate N D, et al. Laser- and heavy ioninduced charge collection in bulk FinFETs. IEEE Trans Nucl Sci, 2011, 58: 2563–2569CrossRefGoogle Scholar
  6. 6.
    El-Mamouni F, Zhang E X, Ball D R, et al. Heavy-ion-induced current transients in bulk and SOI FinFETs. IEEE Trans Nucl Sci, 2012, 59: 2674–2681CrossRefGoogle Scholar
  7. 7.
    Qin J R, Chen S M, Chen J J. 3-D TCAD simulation study of the single event effect on 25 nm raised source-drain FinFET. Sci China Tech Sci, 2012, 55: 1576–1580CrossRefGoogle Scholar
  8. 8.
    Simoen E, Gaillardin M, Paillet P, et al. Radiation effects in advanced multiple gate and silicon-on-insulator transistors. IEEE Trans Nucl Sci, 2013, 60: 1970–1991CrossRefGoogle Scholar
  9. 9.
    Yu J T, Chen S M, Chen J J, et al. Fin width and height dependence of bipolar amplification in bulk FinFETs submitted to heavy ion irradiation. Chin Phys B, 2015, 24: 119401CrossRefGoogle Scholar
  10. 10.
    Munteanu D, Autran J L. Modeling and simulation of single-event effects in digital devices and ICs. IEEE Trans Nucl Sci, 2008, 55: 1854–1878CrossRefGoogle Scholar
  11. 11.
    Munteanu D, Autran J L. 3-D simulation analysis of bipolar amplification in planar double-gate and FinFET with independent gates. IEEE Trans Nucl Sci, 2009, 56: 2083–2090CrossRefGoogle Scholar
  12. 12.
    Munteanu D, Autran J L. Simulation analysis of bipolar amplification in independent-gate FinFET and multi-channel NWFET submitted to heavy-ion irradiation. IEEE Trans Nucl Sci, 2012, 59: 3249–3257CrossRefGoogle Scholar
  13. 13.
    Fang Y P, Oates A S. Neutron-induced charge collection simulation of bulk FinFET SRAMs compared with conventional planar SRAMs. IEEE Trans Device Mater Relib, 2011, 11: 551–554CrossRefGoogle Scholar
  14. 14.
    Hubert G, Artola L, Regis D. Impact of scaling on the soft error sensitivity of bulk, FDSOI and FinFET technologies due to atmospheric radiation. Integration VLSI J, 2015, 50: 39–47CrossRefGoogle Scholar
  15. 15.
    Nsengiyumva P, Ball D R, Kauppila J S, et al. A comparison of the SEU response of planar and FinFET D flip-flops at advanced technology nodes. IEEE Trans Nucl Sci, 2016, 63: 266–272CrossRefGoogle Scholar
  16. 16.
    Yu J T, Chen S M, Chen J J, et al. Effect of supply voltage and bodybiasing on single-event transient pulse quenching in bulk fin fieldeffect- transistor process. Chin Phys B, 2016, 25: 049401CrossRefGoogle Scholar
  17. 17.
    Dodd P E, Sexton F W, Hash G L, et al. Impact of technology trends on SEU in CMOS SRAMs. IEEE Trans Nucl Sci, 1996, 43: 2797–2804CrossRefGoogle Scholar
  18. 18.
    Dodd P E, Massengill L W. Basic mechanisms and modeling of single- event upset in digital microelectronics. IEEE Trans Nucl Sci, 2003, 50: 583–602CrossRefGoogle Scholar
  19. 19.
    Atkinson N M, Ahlbin J R, Witulski A F, et al. Effect of transistor density and charge sharing on single-event transients in 90-nm bulk CMOS. IEEE Trans Nucl Sci, 2011, 58: 2578–2584CrossRefGoogle Scholar
  20. 20.
    Artola L, Gaillardin M, Hubert G, et al. Modeling single event transients in advanced devices and ICs. IEEE Trans Nucl Sci, 2015, 62: 1528–1539CrossRefGoogle Scholar
  21. 21.
    Ferlet-Cavrois V, Vizkelethy G, Paillet P, et al. Charge enhancement effect in NMOS bulk transistors induced by heavy ion irradiationcomparison with SOI. IEEE Trans Nucl Sci, 2004, 51: 3255–3262CrossRefGoogle Scholar
  22. 22.
    Robert B. Single-event effects in advanced CMOS technology. In: Proceedings of IEEE Nuclear and Space Radiation Effects Conference Short Course. IEEE, 2005Google Scholar
  23. 23.
    El-Mamouni F. Single Event Transient Effects in Highly Scaled Bulk and SOI FinFETs. Dissertation for Doctoral Degree. Nashville: Vanderbilt University, 2012Google Scholar
  24. 24.
    Neamen D A. Semiconductor Physics and Devices Basic Principles. New York: McGraw-Hill Educaion, 2012Google Scholar
  25. 25.
    Jagannathan S, Gadlage M J, Bhuva B L, et al. Independent measurement of SET pulse widths from N-Hits and P-Hits in 65-nm CMOS. IEEE Trans Nucl Sci, 2010, 57: 3386–3391Google Scholar
  26. 26.
    Chen J J, Chen S M, He Y B, et al. Novel layout technique for N-hit single-event transient mitigation via source-extension. IEEE Trans Nucl Sci, 2012, 59: 2859–2866CrossRefGoogle Scholar
  27. 27.
    Chen S M, Liang B, Liu B W, et al. Temperature dependence of digital SET pulse width in bulk and SOI technologies. IEEE Trans Nucl Sci, 2008, 55: 2914–2920CrossRefGoogle Scholar
  28. 28.
    Gadlage M J, Ahlbin J R, Ramachandran V, et al. Temperature dependence of digital single-event transients in bulk and fully-depleted SOI technologies. IEEE Trans Nucl Sci, 2009, 56: 3115–3121CrossRefGoogle Scholar
  29. 29.
    Chen S M, Chen J J. Temperature dependence of the P-hit single event transient pulse width in a three-transistor inverter chain. Chin Phys B, 2012, 21: 016104CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • JunTing Yu
    • 1
    Email author
  • ShuMing Chen
    • 1
    • 2
  • JianJun Chen
    • 1
  • PengCheng Huang
    • 1
  1. 1.College of ComputerNational University of Defense TechnologyChangshaChina
  2. 2.National Laboratory for Parallel and Distributed ProcessingNational University of Defense TechnologyChangshaChina

Personalised recommendations