Skip to main content
Log in

High-energy cathode materials for Li-ion batteries: A review of recent developments

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Lithium ion batteries (LIBs) represent one of the most promising solutions for environmentally friendly transportation such as electric vehicles. The demand for high energy density, low cost and environmentally friendly batteries makes high-capacity cathode materials very attractive for future LIBs. Layered LiNi x Co y Mn z O2 (x+y+z=1), Li-rich oxides and Li-V-O compounds have attracted much attention due to their high capacities in recent years. In this review, we focus on the state-of-the-art research activities related to LiNi x Co y Mn z O2, Li-rich oxides and Li-V-O compounds, including their structures, reaction mechanisms during cycling, challenges and strategies that have been studied to improve their electrochemical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathew V, Kim S, Kang J, et al. Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Mater, 2014, 6: e138

    Article  Google Scholar 

  2. Alias N, Mohamad A A. Advances of aqueous rechargeable lithium-ion battery: A review. J Power Sources, 2015, 274: 237–251

    Article  Google Scholar 

  3. Wang Y, Liu B, Li Q, et al. Lithium and lithium ion batteries for applications in microelectronic devices: a review. J Power Sources, 2015, 286: 330–345

    Article  Google Scholar 

  4. Waag W, Fleischer C, Sauer D U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J Power Sources, 2014, 258: 321–339

    Article  Google Scholar 

  5. Rui X, Yan Q, Skyllas-Kazacos M, et al. Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources, 2014, 258: 19–38

    Article  Google Scholar 

  6. Li H H, Jin J, Wei J P, et al. Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochem Commun, 2009, 11: 95–98

    Article  Google Scholar 

  7. Lin C H, Zhang Y Z, Chen L, et al. Hydrogen peroxide assisted synthesis of LiNi1/3Co1/3Mn1/3O2 as high-performance cathode for lithium-ion batteries. J Power Sources, 2015, 280: 263–271

    Article  Google Scholar 

  8. Zhang X, Zheng H, Battaglia V, et al. Electrochemical performance of spinel LiMn2O4 cathode materials made by flame-assisted spray technology. J Power Sources, 2011, 196: 3640–3645

    Article  Google Scholar 

  9. Zheng J, Yong H H, Yang W Z. Synthesis and characterization of LiFe(PO4)(3–x)/3Brx/C as a cathode material for lithium-ion battery. Sci China Tech Sci, 2015, 58: 1294–1298

    Article  Google Scholar 

  10. Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0<x<–1): A new cathode material for batteries of high energy density. Mater Res Bull, 1980, 15: 783–789

    Article  Google Scholar 

  11. Belov D, Yang M H. Failure mechanism of Li-ion battery at overcharge conditions. J Solid State Electrochem, 2008, 12: 885–894

    Article  Google Scholar 

  12. Doh C H, Kim D H, Kim H S, et al. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety tests. J Power Sources, 2008, 175: 881–885

    Article  Google Scholar 

  13. Song M Y, Lee R. Synthesis by sol-gel method and electrochemical properties of LiNiO2 cathode material for lithium secondary battery. J Power Sources, 2002, 111: 97–103

    Article  Google Scholar 

  14. Xie H M, Wang R S, Ying J R, et al. Optimized LiFePO4-polyacene cathode material for lithium-ion batteries. Adv Mater, 2006, 18: 2609–2613

    Article  Google Scholar 

  15. Zhou X, Deng Y, Wan L, et al. A surfactant-assisted synthesis route for scalable preparation of high performance of LiFe0.15Mn0.85PO4/C cathode using bimetallic precursor. J Power Sources, 2014, 265: 223–230

    Article  Google Scholar 

  16. Zhao B, Jiang Y, Zhang H, et al. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J Power Sources, 2009, 189: 462–466

    Article  Google Scholar 

  17. Chi Z X, Zhang W, Wang X S, et al. Accurate surface control of core-shell structured LiMn0.5Fe0.5PO4@C for improved battery performance. J Mater Chem A, 2014, 2: 17359–17365

    Article  Google Scholar 

  18. Kraytsberg A, Eli Y E. Higher, stronger, better … A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater, 2012, 2: 922–939

    Article  Google Scholar 

  19. Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci, 2012, 5: 7854–7863

    Article  Google Scholar 

  20. Wang Y, Wang Y, Hosono E, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed, 2008, 47: 7461–7465

    Article  Google Scholar 

  21. Du K, Zhang L H, Cao Y B, et al. Synthesis of LiMn0.8Fe0.2PO4/C by co-precipitation method and its electrochemical performances as a cathode material for lithium-ion batteries. Mater Chem Phys, 2012, 136: 925–929

    Article  Google Scholar 

  22. Chen Y, Xu G F, Li J L, et al. High capacity 0.5Li2MnO3·0.5LiNi0.33 Co0.33Mn0.33O2 cathode material via a fast co-precipitation method. Electrochim Acta, 2013, 87: 686–692

    Article  Google Scholar 

  23. Yuan W, Zhang H Z, Liu Q, et al. Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta, 2014, 135: 199–207

    Article  Google Scholar 

  24. Xu X, Luo Y Z, Mai L Q, et al. Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries. NPG Asia Mater, 2012, 4: e20

    Article  Google Scholar 

  25. Yu R, Zhang C, Meng Q, et al. Facile synthesis of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties. ACS Appl Mater Inter, 2013, 5: 12394–12399

    Article  Google Scholar 

  26. Dai L, Gao Y, Cao C, et al. VO2(A) nanostructures with controllable feature sizes and giant aspect ratios: one-step hydrothermal synthesis and lithium-ion battery performance. RSC Adv, 2012, 2: 5265–5270

    Article  Google Scholar 

  27. Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett, 2001, 30: 744–745

    Article  Google Scholar 

  28. Rossen E, Jones C D W, Dahn J R. Structure and electrochemistry of LixMnyNi1-y O2. Solid State Ionics, 1992, 57: 311–318

    Article  Google Scholar 

  29. Lu Z, MacNeil D D, Dahn J R. Layered Li[NixCo1-2x Mnx]O2 cathode materials for lithium-ion batteries. Electrochem Solid State Lett, 2001, 4: A200–A203

    Article  Google Scholar 

  30. Yabuuchi N, Ohzuku T. Novel lithium insertion material of Li-Co1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources, 2003, 119: 171–174

    Article  Google Scholar 

  31. Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271–4302

    Article  Google Scholar 

  32. Oh S W, Myung S T, Kang H B, et al. Effects of Co doping on Li[Ni0.5CoxMn1.5-x ]O4 spinel materials for 5 V lithium secondary batteries via Co-precipitation. J Power Sources, 2009, 189: 752–756

    Article  Google Scholar 

  33. Wu H M, Tu J P, Yuan Y F, et al. Effects of abundant Co doping on the structure and electrochemical characteristics of LiMn1.5Ni0.5-x -CoxO4. J Electroanal Chem, 2007, 608: 8–14

    Article  Google Scholar 

  34. Cho T H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3-Co1/3]O2 prepared by carbonate co-precipitation method. J Power Sources, 2005, 142: 306–312

    Article  Google Scholar 

  35. Xu B, Qian D N, Wang Z Y, et al. Recent progress in cathode materials research for advanced lithium ion batteries. Mat Sci Eng R, 2012, 73: 51–65

    Article  Google Scholar 

  36. Jiang J, Eberman K W, Krause L J, et al. Reactivity of Liy[NixCo1-2x -Mnx]O2 (x=0.1, 0.2, 0.35, 0.45, and 0.5; y=0.3, 0.5) with nonaqueous solvents and electrolytes studied by ARC. J Electrochem Soc, 2005, 152: A566–A569

    Article  Google Scholar 

  37. Yoon W S, Grey C P, Balasubramanian M, et al. Combined NMR and XAS study on local environments and electronic structures of electrochemically Li-ion deintercalated Li1-x Co1/3Ni1/3Mn1/3O2 electrode system. Electrochem Solid State Lett, 2004, 7: A53–A55

    Article  Google Scholar 

  38. Kim J M, Chung H T. The first cycle characteristics of Li[Ni1/3Co1/3-Mn1/3]O2 charged up to 4.7 V. Electrochim Acta, 2004, 49: 937–944

    Article  Google Scholar 

  39. Yabuuchi N, Koyama Y, Nakayama N, et al. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries II. Preparation and characterization. J Electrochem Soc, 2005, 152: A1434–A1440

    Article  Google Scholar 

  40. Shaju K M, Rao G V S, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta, 2002, 48: 145–151

    Article  Google Scholar 

  41. Ngala J K, Chernova N A, Ma M M, et al. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4-Co0.2O2 compound. J Mater Chem, 2004, 14: 214–220

    Article  Google Scholar 

  42. Liang L W, Du K, Peng Z D, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2-Mn0.2O2 cathode material for secondary lithium batteries. Electrochim Acta, 2014, 130: 82–89

    Article  Google Scholar 

  43. Luo X F, Wang X Y, Liao L, et al. Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation. J Power Sources, 2006, 158: 654–658

    Article  Google Scholar 

  44. Shi S J, Mai Y J, Tang Y Y, et al. Preparation and electrochemical performance of ball-like LiMn0.4Ni0.4Co0.2O2 cathode materials. Electrochim Acta, 2012, 77: 39–46

    Article  Google Scholar 

  45. Zhou Y K, Li H L. Sol-gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array. J Mater Chem, 2002, 12: 681–686

    Article  Google Scholar 

  46. Jiang X Y, Sha Y J, Cai R, et al. The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries. J Mater Chem A, 2015, 3: 10536–10544

    Article  Google Scholar 

  47. Patoux S, Doeff M M. Direct synthesis of LiNi1/3Co1/3Mn1/3O2 from nitrate precursors. Electrochem Commun, 2004, 6: 767–772

    Article  Google Scholar 

  48. Reddy M V, Rao G V S, Chowdari B V R. Synthesis by molten salt and cathodic properties of Li(Ni1/3Co1/3Mn1/3)O2. J Power Sources, 2006, 159: 263–267

    Article  Google Scholar 

  49. Myung S T, Lee M H, Komaba S, et al. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochim Acta, 2005, 50: 4800–4806

    Article  Google Scholar 

  50. Oljaca M, Blizanac B, Du Pasquier A, et al. Novel Li(Ni1/3Co1/3-Mn1/3)O2 cathode morphologies for high power Li-ion batteries. J Power Sources, 2014, 248: 729–738

    Article  Google Scholar 

  51. Shin Y J, Choi W J, Hong Y S, et al. Investigation on the microscopic features of layered oxide Li[Ni1/3Co1/3Mn1/3]O2 and their influences on the cathode properties. Solid State Ionics, 2006, 177: 515–521

    Article  Google Scholar 

  52. Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4cells. J Electrochem Soc, 1996, 143: 2204–2211

    Article  Google Scholar 

  53. Li D C, Kato Y, Kobayakawa K, et al. Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating. J Power Sources, 2006, 160: 1342–1348

    Article  Google Scholar 

  54. Jang S B, Kang S H, Amine K, et al. Synthesis and improved electrochemical performance of Al(OH)3-coated Li[Ni1/3Mn1/3Co1/3]O2 cathode materials at elevated temperature. Electrochim Acta, 2005, 50: 4168–4173

    Article  Google Scholar 

  55. Kim H S, Kong M, Kim K, et al. Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Power Sources, 2007, 171: 917–921

    Article  Google Scholar 

  56. Kim Y, Kim H S, Martin S W. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries. Electrochim Acta, 2006, 52: 1316–1322

    Article  Google Scholar 

  57. Kong J Z, Ren C, Tai G A, et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources, 2014, 266: 433–439

    Article  Google Scholar 

  58. Hu S K, Cheng G H, Cheng M Y, et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources, 2009, 188: 564–569

    Article  Google Scholar 

  59. Liu K, Yang G L, Dong Y, et al. Enhanced cycling stability and rate performance of Li[Ni0.5Co0.2Mn0.3]O2 by CeO2 coating at high cut-off voltage. J Power Sources, 2015, 281: 370–377

    Article  MathSciNet  Google Scholar 

  60. Wu F, Wang M, Su Y F, et al. Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. J Power Sources, 2009, 191: 628–632

    Article  Google Scholar 

  61. Liu W, Wang M, Gao X L, et al. Improvement of the high-temperature, high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating. J Alloy Compd, 2012, 543: 181–188

    Article  Google Scholar 

  62. Yang X K, Yu R Z, Ge L, et al. Facile synthesis and performances of nanosized Li2TiO3-based shell encapsulated LiMn1/3Ni1/3Co1/3O2 microspheres. J Mater Chem A, 2014, 2: 8362–8368

    Article  Google Scholar 

  63. Wu F, Tian J, Su Y F, et al. Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. J Power Sources, 2014, 269: 747–754

    Article  Google Scholar 

  64. Shi S J, Tu J P, Mai Y J, et al. Structure and electrochemical performance of CaF2 coated LiMn1/3Ni1/3Co1/3O2 cathode material for Li-ion batteries. Electrochim Acta, 2012, 83: 105–112

    Article  Google Scholar 

  65. Shi S J, Tu J P, Tang Y Y, et al. Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources, 2013, 225: 338–346

    Article  Google Scholar 

  66. Li L J, Chen Z Y, Zhang Q B, et al. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J Mater Chem A, 2015, 3: 894–904

    Article  Google Scholar 

  67. He J R, Chen Y F, Li P J, et al. Synthesis and electrochemical properties of graphene-modified LiCo1/3Ni1/3Mn1/3O2 cathodes for lithium ion batteries. RSC Adv, 2014, 4: 2568–2572

    Article  Google Scholar 

  68. Kang S H, Kim J, Stoll M E, et al. Layered Li(Ni0.5-x Mn0.5-x M2x’)O2 (M’=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. J Power Sources, 2002, 112: 41–48

    Article  Google Scholar 

  69. El Mofid W, Ivanov S, Konkin A, et al. A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution. J Power Sources, 2014, 268: 414–422

    Article  Google Scholar 

  70. Ding C X, Bai Y C, Feng X Y, et al. Improvement of electrochemical properties of layered LiNi1/3Co1/3Mn1/3O2 positive electrode material by zirconium doping. Solid State Ionics, 2011, 189: 69–73

    Article  Google Scholar 

  71. Zhang B, Li L J, Zheng J C. Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. J Alloy Compd, 2012, 520: 190–194

    Article  Google Scholar 

  72. Park S H, Oh S W, Sun Y K. Synthesis and structural characterization of layered Li[Ni1/3+x Co1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis. J Power Sources, 2005, 146: 622–625

    Article  Google Scholar 

  73. Yue P, Wang Z X, Li X H, et al. The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim Acta, 2013, 95: 112–118

    Article  Google Scholar 

  74. Hua W B, Guo X D, Zheng Z, et al. Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. J Power Sources, 2015, 275: 200–206

    Article  Google Scholar 

  75. Li J L, Yao R M, Cao C B. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a highperformance cathode for Li-ion battery. ACS Appl Mater Inter, 2014, 6: 5075–5082

    Article  Google Scholar 

  76. Park D H, Lim S T, Hwang S J, et al. Low-temperature synthesis of LixMn0.67Ni0.33O2 (0.2<x<0.33) nanowires with a hexagonal layered structure. Adv Mater, 2005, 17: 2834–2837

    Article  Google Scholar 

  77. Song H K, Lee K T, Kim M G, et al. Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater, 2010, 20: 3818–3834

    Article  Google Scholar 

  78. Li J F, Xiong S L, Liu Y R, et al. Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: Designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy, 2013, 2: 1249–1260

    Article  Google Scholar 

  79. Sun Y K, Chen Z H, Noh H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater, 2012, 11: 942–947

    Article  Google Scholar 

  80. Sun Y K, Myung S T, Park B C, et al. High-energy cathode material for long-life and safe lithium batteries. Nat Mater, 2009, 8 320–324

    Article  Google Scholar 

  81. Weaving J S, Coowar F, Teagle D A, et al. Development of high energy density Li-ion batteries based on LiNi1-x-y CoxAlyO2. J Power Sources, 2001, 97: 733–735

    Article  Google Scholar 

  82. Ju J H, Ryu K S. Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries. J Alloy Compd, 2011, 509: 7985–7992

    Article  Google Scholar 

  83. Ju S H, Jang H C, Kang Y C. Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape. Electrochim Acta, 2007, 52: 7286–7292

    Article  Google Scholar 

  84. Bak S M, Nam K W, Chang W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem Mater, 2013, 25: 337–351

    Article  Google Scholar 

  85. Lee D J, Scrosati B, Sun Y K. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05] O2 lithium battery electrode with improved cycling performance at 55 °C. J Power Sources, 2011, 196: 7742–7746

    Article  Google Scholar 

  86. Cho Y, Cho J. Significant improvement of LiNi0.8Co0.15Al0.05O2 cathodes at 60°C by SiO2 dry coating for Li-ion batteries. J Electrochem Soc, 2010, 157: A625–A629

    Article  Google Scholar 

  87. Cho Y, Lee Y S, Park S A, et al. LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05 (OH)2 precursors. Electrochim Acta, 2010, 56: 333–339

    Article  Google Scholar 

  88. Lee M J, Noh M, Park M H, et al. Role of nanoscale-range vanadium treatment on LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures. J Mater Chem A, 2015, 3, 13453–13460

    Article  Google Scholar 

  89. Tavakoli A H, Kondo H, Ukyo Y, et al. Stabilizing effect of Mg on the energetics of the Li(Ni, Co, Al)O2 cathode material for lithium ion batteries. J Electrochem Soc, 2013, 160: A302–A305

    Article  Google Scholar 

  90. Kondo H, Takeuchi Y, Sasaki T, et al. Effects of Mg-substitution in Li(Ni, Co, Al)O2 positive electrode materials on the crystal structure and battery performance. J Power Sources, 2007, 174: 1131–1136

    Article  Google Scholar 

  91. Zhu L, Liu Y, Wu W Y, et al. Surface fluorinated LiNi0.8Co0.15Al0.05-O2 as a positive electrode material for lithium ion batteries. J Mater Chem A, 2015, 3: 15156–15162

    Article  Google Scholar 

  92. Wu N T, Wu H, Yuan W, et al. Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A, 2015, 3: 13648–13652

    Article  Google Scholar 

  93. Thackeray M M, Johnson C S, Vaughey J T, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem, 2005, 15: 2257–2267

    Article  Google Scholar 

  94. Zhang L J, Wu B R, Li N, et al. Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochim Acta, 2014, 118: 67–74

    Article  Google Scholar 

  95. Shi S J, Tu J P, Tang Y Y, et al. Preparation and characterization of macroporous Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion batteries via aerogel template. J Power Sources, 2013, 240: 140–148

    Article  Google Scholar 

  96. Li J, Klöpsch R, Stan M C, et al. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16-Co0.08]O2 with improved rate capability. J Power Sources, 2011, 196: 4821–4825

    Article  Google Scholar 

  97. Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem, 2007, 17: 3112–3125

    Article  Google Scholar 

  98. Shi S J, Tu J P, Zhang Y D, et al. Morphology and electrochemical performance of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials prepared with different metal sources. Electrochim Acta, 2013, 109: 828–834

    Article  Google Scholar 

  99. Thackeray M M, Kang S H, Johnson C S, et al. Comments on the structural complexity of lithium-rich Li1+x M1-x O2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Commun, 2006, 8: 1531–1538

    Article  Google Scholar 

  100. Johnson C S, Li N C, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x ) LiMn0.333Ni0.333Co0.333O2 (0=x=0.7). Chem Mater, 2008, 20: 6095–6106

    Article  Google Scholar 

  101. Yu X Q, Lyu Y C, Gu L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater, 2014, 4: 1300950

    Article  Google Scholar 

  102. Lu Z H, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. J Electrochem Soc, 2002, 149: A778–A791

    Article  Google Scholar 

  103. Bréger J, Jiang M, Dupré N, et al. High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution. J Solid State Chem, 2005, 178: 2575–2585

    Article  Google Scholar 

  104. Jarvis K A, Deng Z Q, Allard L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem Mater, 2011, 23: 3614–3621

    Article  Google Scholar 

  105. Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a highcapacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc, 2011, 133: 4404–4419

    Article  Google Scholar 

  106. Armstrong A R, Holzapfel M, Novák P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc, 2006, 128: 8694–8698

    Article  Google Scholar 

  107. Yu H J, Kim H, Wang Y R, et al. High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem Chem Phys, 2012, 14: 6584–6595

    Article  Google Scholar 

  108. Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc, 2002, 149: A815–A822

    Article  Google Scholar 

  109. Robertson A D, Bruce P G. The origin of electrochemical activity in Li2MnO3. Chem Commun, 2002: 2790–2791

    Google Scholar 

  110. Kim K J, Jo Y N, Lee W J, et al. Effects of inorganic salts on the morphological, structural, and electrochemical properties of prepared nickel-rich Li[Ni0.6Co0.2Mn0.2]O2. J Power Sources, 2014, 268: 349–355

    Article  Google Scholar 

  111. Wang D P, Belharouak I, Ortega L H, et al. Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation. J Power Sources, 2015, 274: 451–457

    Article  Google Scholar 

  112. Wang J, Qiu B, Cao H L, et al. Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2-0.4LiNixMnyCo1-x-yO2 cathode materials for lithium-ion batteries. J Power Sources, 2012, 218: 128–133

    Article  Google Scholar 

  113. Shi S J, Tu J P, Tang Y Y, et al. Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. JPower Sources, 2013, 228: 14–23

    Article  Google Scholar 

  114. Shi S J, Tu J P, Tang Y Y, et al. Morphology and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials treated in molten salts. J Power Sources, 2013, 241: 186–195

    Article  Google Scholar 

  115. Son M Y, Hong Y J, Choi S H, et al. Effects of ratios of Li2MnO3 and Li(Ni1/3Mn1/3Co1/3)O2 phases on the properties of composite cathode powders in spray pyrolysis. Electrochim Acta, 2013, 103: 110–118

    Article  Google Scholar 

  116. Wei X, Zhang S C, Du Z J, et al. Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method. Electrochim Acta, 2013, 107: 549–554

    Article  Google Scholar 

  117. Shi S J, Tu J P, Tang Y Y, et al. Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J Power Sources, 2013, 221: 300–307

    Article  Google Scholar 

  118. Zheng J M, Wu X B, Yang Y. A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2-Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta, 2011, 56: 3071–3078

    Article  Google Scholar 

  119. Liu J L, Chen L, Hou M Y, et al. General synthesis of xLi2-MnO3·(1-x) LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries. J Mater Chem, 2012, 22: 25380–25387

    Article  Google Scholar 

  120. Hong J, Seo D H, Kim S W, et al. Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J Mater Chem, 2010, 20: 10179–10186

    Article  Google Scholar 

  121. Gu M, Belharouak I, Zheng J M, et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano, 2012, 7: 760–767

    Article  Google Scholar 

  122. Shi S J, Tu J P, Mai Y J, et al. Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim Acta, 2012, 63: 112–117

    Article  Google Scholar 

  123. Liu J, Reeja-Jayan B, Manthiram A. Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13-Co0.13]O2 cathodes. J Phys Chem C, 2010, 114: 9528–9533

    Article  Google Scholar 

  124. He W, Qian J F, Cao Y L, et al. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Adv, 2012, 2: 3423–3429

    Article  Google Scholar 

  125. Shi S J, Tu J P, Tang Y Y, et al. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta, 2013, 88: 671–679

    Article  Google Scholar 

  126. Qiu B, Wang J, Xia Y G, et al. Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. ACS Appl Mater Inter, 2014, 6: 9185–9193

    Article  Google Scholar 

  127. Zhang X P, Sun S W, Wu Q, et al. Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification. J Power Sources, 2015, 282: 378–384

    Article  Google Scholar 

  128. Chen J J, Li Z D, Xiang H F, et al. Enhanced electrochemical performance and thermal stability of a CePO4-coated Li1.2Ni0.13Co0.13-Mn0.54O2cathode material for lithium-ion batteries. RSC Adv, 2015, 5: 3031–3038

    Article  Google Scholar 

  129. Ma J, Li B, An L, et al. A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion. J Power Sources, 2015, 277: 393–402

    Article  Google Scholar 

  130. Zheng J M, Zhang Z R, Wu X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J Electrochem Soc, 2008, 155: A775–A782

    Article  Google Scholar 

  131. Zhao T L, Li L, Chen R J, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy, 2015, 15: 164–176

    Article  Google Scholar 

  132. Liu H, Chen C, Du C Y, et al. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J Mater Chem A, 2015, 3: 2634–2641

    Article  Google Scholar 

  133. Jafta C J, Ozoemena K I, Mathe M K, et al. Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta, 2012, 85: 411–422

    Article  Google Scholar 

  134. Lee E, Park J S, Wu T P, et al. Role of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J Mater Chem A, 2015, 3: 9915–9924

    Article  Google Scholar 

  135. Tabuchi M, Nabeshima Y, Takeuchi T, et al. Synthesis and electrochemical characterization of Fe and Ni substituted Li2MnO3-an effective means to use Fe for constructing “Co-free” Li2MnO3 based positive electrode material. J Power Sources, 2011, 196: 3611–3622

    Article  Google Scholar 

  136. Jin X, Xu Q J, Liu H M, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta, 2014, 136: 19–26

    Article  Google Scholar 

  137. Park J H, Lim J, Yoon J, et al. The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2·0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material. Dalton Trans, 2012, 41: 3053–3059

    Article  Google Scholar 

  138. Yamamoto S, Noguchi H, Zhao W W. Improvement of cycling performance in Ti substituted 0.5Li2MnO3-0.5LiNi0.5Mn0.5O2 through suppressing metal dissolution. J Power Sources, 2015, 278: 76–86

    Article  Google Scholar 

  139. Zheng J M, Wu X B, Yang Y. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim Acta, 2013, 105: 200–208

    Article  Google Scholar 

  140. Jiang K C, Wu X L, Yin Y X, et al. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Inter, 2012, 4: 4858–4863

    Article  Google Scholar 

  141. Lee E S, Manthiram A. High Capacity Li[Li0.2Mn0.54Ni0.13 Co0.13] O2-VO2(B) composite cathodes with controlled irreversible capacity loss for lithium-ion batteries. J Electrochem Soc, 2011, 158: A47–A50

    Article  Google Scholar 

  142. Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources, 2009, 191: 644–647

    Article  Google Scholar 

  143. Feng X, Yang Z Z, Tang D C, et al. Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. Phys Chem Chem Phys, 2015, 17: 1257–1264

    Article  Google Scholar 

  144. Lee Y, Kim M G, Cho J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material. Nano Lett, 2008, 8: 957–961

    Article  Google Scholar 

  145. Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem Commun, 2009, 2: 218–220

    Article  Google Scholar 

  146. Wei G Z, Lu X, Ke F S, et al. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater, 2010, 22: 4364–4367

    Article  Google Scholar 

  147. Min J W, Yim C J, Im W B. Facile synthesis of electrospun Li1.2Ni0.17Co0.17Mn0.5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications. ACS Appl Mater Inter, 2013, 5: 7765–7769

    Article  Google Scholar 

  148. Yang J G, Cheng F Y, Zhang X L, et al. Porous 0.2Li2MnO3·0.8Li Ni0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries. J Mater Chem A, 2014, 2: 1636–1640

    Article  Google Scholar 

  149. Shi S J, Lou Z R, Xia T F, et al. Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries. J Power Sources, 2014, 257: 198–204

    Article  Google Scholar 

  150. He X, Wang J, Kloepsch R, et al. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res, 2014, 7: 110–118

    Article  Google Scholar 

  151. Jiang Y, Yang Z, Luo W, et al. Hollow 0.3Li2MnO3·0.7LiNi0.5-Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries. Phys Chem Chem Phys, 2013, 15: 2954–2960

    Article  Google Scholar 

  152. Zhang Y D, Li Y, Niu X Q, et al. A peanut-like hierarchical micro/nano-Li1.2Mn0.54Ni0.18Co0.08O2 cathode material for lithium-ion batteries with enhanced electrochemical performance. J Mater Chem A, 2015, 3: 14291–14297

    Article  Google Scholar 

  153. Yang X K, Wang X Y, Wei Q L, et al. Synthesis and characterization of a Li-rich layered cathode material Li1.15[(Mn1/3Ni1/3Co1/3)0.5-(Ni1/4Mn3/4)0.5]0.85O2 with spherical core-shell structure. J Mater Chem, 2012, 22: 19666–19672

    Article  Google Scholar 

  154. Armstrong G, Canales J, Armstrong A R. The synthesis and lithium intercalation electrochemistry of VO2(B) ultra-thin nanowires. J Power Sources, 2008, 178: 723–728

    Article  Google Scholar 

  155. Li X, Chen X, Chen X, et al. Hydrothermal synthesis and characterization of VO2(B) nanorods array. J Cryst Growth, 2007, 309: 43–47

    Article  Google Scholar 

  156. Reddy C V S, Walker E H, Wicker S A, et al. Synthesis of VO2(B) nanorods for Li battery application. Curr Appl Phys, 2009, 9: 1195–1198

    Article  Google Scholar 

  157. Ganganagappa N, Siddaramanna A. One step synthesis of monoclinic VO2(B) bundles of nanorods: Cathode for Li ion battery. Mater Charact, 2012, 68: 58–62

    Article  Google Scholar 

  158. Miloševic S, Stojkovic I, Kurko S, et al. The simple one-step solvothermal synthesis of nanostructurated VO2(B). Ceram Int, 2012, 38: 2313–2317

    Article  Google Scholar 

  159. Lee K, Cao G. Enhancement of intercalation properties of V2O5 film by TiO2 addition. J Phys Chem B, 2005, 109: 11880–11885

    Article  Google Scholar 

  160. Liang S, Qin M, Tang Y, et al. Facile synthesis of nanosheetstructured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries. Met Mater Int, 2014, 20: 983–988

    Article  Google Scholar 

  161. Madhuri K V, Rao K S, Naidu B S, et al. Characterization of laserablated V2O5 thin films. J Mater Sci-Mater EL, 2002, 13: 425–432.

    Article  Google Scholar 

  162. Pinna N, Willinger M, Weiss K, et al. Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett, 2003, 3: 1131–1134

    Article  Google Scholar 

  163. Zhang X F, Wang K X, Wei X, et al. Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem Mater, 2011, 23: 5290–5292

    Article  Google Scholar 

  164. Xu Y, Dunwell M, Fei L, et al. Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries. ACS Appl Mater Inter, 2014, 6: 20408–20413

    Article  Google Scholar 

  165. Liu Y, Li J, Zhang Q, et al. Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochem Commun, 2011, 13: 1276–1279

    Article  Google Scholar 

  166. Le D B, Passerini S, Coustier F, et al. Intercalation of polyvalent cations into V2O5 aerogels. Chem Mater, 1998, 10: 682–684

    Article  Google Scholar 

  167. Gao S, Chen Z, Wei M, et al. Single crystal nanobelts of V3O7·H2O: A lithium intercalation host with a large capacity. Electrochim Acta, 2009, 54: 1115–1118

    Article  Google Scholar 

  168. Li C, Isobe M, Ueda H, et al. Crystal growth and anisotropic magnetic properties of V3O7. J Solid State Chem, 2009, 182: 3222–3225

    Article  Google Scholar 

  169. Li Z, Sun H, Xu J, et al. The synthesis, characterization and electrochemical properties of V3O7·H2O/CNT nanocomposite. Solid State Ionics, 2014, 262: 30–34

    Article  Google Scholar 

  170. Zhang Y, Liu X, Chen D, et al. Fabrication of V3O7·H2O@C core-shell nanostructured composites and the effect of V3O7·H2O and V3O7·H2O@C on decomposition of ammonium perchlorate. J Alloy Compd, 2011, 509: L69–L73

    Article  Google Scholar 

  171. Zhang Y F, Zhou M, Fan M J, et al. Improvement of the electrochemical properties of V3O7·H2O nanobelts for Li battery application through synthesis of V3O7@C core-shell nanostructured composites. Curr Appl Phys, 2011, 11: 1159–1163

    Article  Google Scholar 

  172. Yamazaki S, Li C, Ohoyama K, et al. Synthesis, structure and magnetic properties of V4O9—a missing link in binary vanadium oxides. J Solid State Chem, 2010, 183: 1496–1503

    Article  Google Scholar 

  173. Chine M K, Sediri F, Gharbi N. Solvothermal synthesis of V4O9 flake-like morphology and its photocatalytic application in the degradation of methylene blue. Mater Res Bull, 2012, 47: 3422–3426

    Article  Google Scholar 

  174. Zou Z G, Cheng H, He J Y, et al. V6O13 nanosheets synthesized from ethanol-aqueous solutions as high energy cathode material for lithium-ion batteries. Electrochim Acta, 2014, 135: 175–180

    Article  Google Scholar 

  175. Murphy D W, Christian P A, DiSalvo F J, et al. Lithium incorporation by V6O13 and related vanadium (+4, +5) oxide cathode materials. J Electrochem Soc, 1981, 128: 2053–2060

    Article  Google Scholar 

  176. Li Y X, Fedkiw P S, Khan S A. Lithium/V6O13 cells using silica nanoparticle-based composite electrolyte. Electrochim Acta, 2002, 47: 3853–3861

    Article  Google Scholar 

  177. Schmitt T, Augustsson A, Duda L C, et al. Li insertion into V6O13 battery cathodes studied by soft X-ray spectroscopies. J Appl Phys, 2004, 95: 6444–6449

    Article  Google Scholar 

  178. Huang Z Y, Zeng H M, Xue L, et al. Synthesis of vanadium oxide, V6O13 hollow-flowers materials and their application in electrochemical supercapacitors. J Alloy Compd, 2011, 509: 10080–10085

    Article  Google Scholar 

  179. Bergström Ö, Gustafsson T, Thomas J O. Lithium insertion into V6O13 studied by deformation electron density refinement of single-crystal X-ray data. Solid State Ionics, 1998, 110: 179–186

    Article  Google Scholar 

  180. Tian X C, Xu X, He L, et al. Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. J Power Sources, 2014, 255: 235–241

    Article  Google Scholar 

  181. Bak H, Lee J, Kim B, et al. Electrochemical behavior of Li/LiV3O8 secondary cells. Electron Mater Lett, 2013, 9: 195–199

    Article  Google Scholar 

  182. Gao X W, Wang J Z, Chou S L, et al. Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery. J Power Sources, 2012, 220: 47–53

    Article  Google Scholar 

  183. Ma H, Yuan Z Q, Cheng F Y, et al. Synthesis and electrochemical properties of porous LiV3O8 as cathode materials for lithium-ion batteries. J Alloy Compd, 2011, 509: 6030–6035

    Article  Google Scholar 

  184. Sarkar S, Banda H, Mitra S. High capacity lithium-ion battery cathode using LiV3O8 nanorods. Electrochim Acta, 2013, 99: 242–252

    Article  Google Scholar 

  185. Sun D, Jin G H, Wang H Y, et al. LixV2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batteries. J Mater Chem A, 2014, 2: 8009–8016

    Article  Google Scholar 

  186. Sun J L, Peng W X, Song D W, et al. Electrochemical properties of facile emulsified LiV3O8 materials. Mater Chem Phys, 2010, 124: 248–251

    Article  Google Scholar 

  187. Wang D Q, Cao L Y, Huang J F, et al. Synthesis and electrochemical properties of LiV3O8 via an improved sol–gel process. Ceram Int, 2012, 38: 2647–2652

    Article  Google Scholar 

  188. Xie L L, You L Q, Cao X Y, et al. Co3(PO4)2-coated LiV3O8 as positive materials for rechargeable lithium batteries. Electron Mater Lett, 2012, 8: 411–415

    Article  Google Scholar 

  189. Chen-Wiegart K Y, Shearing P, Yuan Q, et al. 3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography. Electrochem Commun, 2012, 21: 58–61

    Article  Google Scholar 

  190. Gedziorowski B, Kondracki L, Swierczek K, et al. Structural and transport properties of Li1+xV1-xO2 anode materials for Li-ion batteries. Solid State Ionics, 2014, 262: 124–127

    Article  Google Scholar 

  191. Tian W, Chisholm M F, Khalifah P G, et al. Single crystal growth and characterization of nearly stoichiometric LiVO2. Mater Res Bull, 2004, 39: 1319–1328

    Article  Google Scholar 

  192. Krimmel A, Loidl A, Klemm M, et al. Magnetic properties of the d-metal heavy-fermion system Li1-xZnxV2O4. Physica B, 2000, 276–278: 766–767

    Article  Google Scholar 

  193. Miyoshi K, Ihara M, Fujiwara K, et al. Magnetic phase transitions in the vanadium spinel system (Li1-xMnx)V2O4. Physica B, 2000, 281–282: 30–31

    Article  Google Scholar 

  194. Krimmel A, Loidl A, Klemm M, et al. Competition between heavy fermion behavior and magnetism in the d-metal system Li1-xZnxV2O4. Physica B, 2000, 281-282: 26–27

    Article  Google Scholar 

  195. Kazakopoulos A, Sarafidis C, Chrissafis K, et al. Synthesis and characterization of inverse spinel LiNiVO4 and LiCoVO4 with impedance spectroscopy. Solid State Ionics, 2008, 179: 1980–1985

    Article  Google Scholar 

  196. Li X, Wei Y J, Ehrenberg H, et al. X-ray diffraction and Raman scattering studies of Li+/e-extracted inverse spinel LiNiVO4. J Alloy Compd, 2009, 471: L26–L28

    Article  Google Scholar 

  197. Phuruangrat A, Thongtem T, Thongtem S. Characterization of nano-crystalline LiNiVO4 synthesized by hydrothermal process. Mater Lett, 2007, 61: 3805–3808

    Article  Google Scholar 

  198. Tang S B, Lai M O, Lu L. Growth and characterization of LiNiVO4 thin film cathode by pulsed laser deposition. Thin Solid Films, 2008, 516: 1693–1698

    Article  Google Scholar 

  199. Thongtem T, Kaowphong S, Thongtem S. Preparation of LiNiVO4 nano-powder using tartaric acid as a complexing agent. Ceram Int, 2007, 33: 1449–1453.

    Article  Google Scholar 

  200. Chernova N A, Roppolo M, Dillon A C, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem, 2009, 19: 2526–2552

    Article  Google Scholar 

  201. McNulty D, Buckley D N, O’Dwyer C. Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. J Power Sources, 2014, 267: 831–873

    Article  Google Scholar 

  202. Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195: 939–954

    Article  Google Scholar 

  203. Chan C K, Peng H L, Twesten R D, et al. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett, 2007, 7: 490–495

    Article  Google Scholar 

  204. Baddour-Hadjean R, Navone C, Pereira-Ramos J P. In situ Raman microspectrometry investigation of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Electrochim Acta, 2009, 54: 6674–6679

    Article  Google Scholar 

  205. Mendialdua J, Casanova R, Barbaux Y. XPS studies of V2O5, V6O13, VO2 and V2O3. J Elec Spectro Rel Phen, 1995, 71: 249–261

    Article  Google Scholar 

  206. Mai L Q, Xu L, Han C H, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett, 2010, 10: 4750–4755

    Article  Google Scholar 

  207. Wong H P, Dave B C, Leroux F, et al. Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels. J Mater Chem, 1998, 8: 1019–1027

    Article  Google Scholar 

  208. Chao D L, Xia X H, Liu J L, et al. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv Mater, 2014, 26: 5794–5800

    Article  Google Scholar 

  209. Kim Y, Kim J S, Thieu M T, et al. Increase in discharge capacity of Li battery assembled with electrochemically prepared V2O5/polypyrrole-composite-film cathode. B Korean Chem Soc, 2010, 31: 3019

    Google Scholar 

  210. Zhou P, Yang X, He L, et al. The Young’s modulus of highaspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation. Appl Phys Lett, 2015, 106: 111908

    Article  Google Scholar 

  211. An Z L, He L, Toda M, et al. Microstructuring of carbon nanotubes-nickel nanocomposite. Nanotechnology, 2015, 26: 195601

    Article  Google Scholar 

  212. Seng K H, Liu J, Guo Z P, et al. Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochem Commun, 2011, 13: 383–386

    Article  Google Scholar 

  213. Chen D, Yin R, Chen S, et al. Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries. Mater Sci Eng B, 2014, 185: 7–12

    Article  Google Scholar 

  214. Pan A Q, Zhu T, Wu H B, et al. Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability. Chem-Eur J, 2013, 19: 494–500

    Article  Google Scholar 

  215. Mai L Q, An Q Y, Wei Q L, et al. Nanoflakes-assembled threedimensional hollow-porous V2O5 as lithium storage cathodes with high-rate capacity. Small, 2014, 10: 3032–3037

    Article  Google Scholar 

  216. An Q Y, Wei Q L, Zhang P F, et al. Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small, 2015, 11: 2654–2660

    Article  Google Scholar 

  217. An Q Y, Zhang P F, Xiong F Y, et al. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res, 2015, 8: 481–490

    Article  Google Scholar 

  218. Zhang C F, Chen Z X, Guo Z P, et al. Additive-free synthesis of 3D V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ Sci, 2013, 6: 974–978

    Article  Google Scholar 

  219. Liu J, Xia H, Xue D F, et al. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc, 2009, 131: 12086–12087

    Article  Google Scholar 

  220. Cheah Y L, Aravindan V, Madhavi S. Improved elevated temperature performance of Al-intercalated V2O5 electrospun nanofibers for lithium-ion batteries. ACS Appl Mater Inter, 2012, 4: 3270–3277

    Article  Google Scholar 

  221. Li Y W, Yao J, Uchaker E, et al. Sn-doped V2O5 film with enhanced lithium-ion storage performance. J Phys Chem C, 2013, 117: 23507–23514

    Article  Google Scholar 

  222. Liu Q, Li Z F, Liu Y D, et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat Commun, 2015, 6: 6127

    Article  Google Scholar 

  223. Wei Q L, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity. J Mater Chem A, 2015, 3: 8070–8075

    Article  Google Scholar 

  224. Wang Y, Shang H M, Chou T, et al. Effects of thermal annealing on the Li+ intercalation properties of V2O5·nH2O xerogel films. J Phys Chem B, 2005, 109, 11363–11366

    Google Scholar 

  225. Bhattacharya P, Saha S K, Yadav A, et al. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys, 2004, 95: 6492–6494

    Article  Google Scholar 

  226. Ding Y L, Wen Y R, Wu C, et al. 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for highenergy lithium ion batteries. Nano Lett, 2015, 15: 1388–1394

    Article  Google Scholar 

  227. Fei H L, Lin Y S, Wei M D. Facile synthesis of V6O13 micro-flowers for Li-ion and Na-ion battery cathodes with good cycling performance. J Colloid Inter Sci, 2014, 425: 1–4

    Article  Google Scholar 

  228. Li N, Huang W X, Shi Q W, et al. A CTAB-assisted hydrothermal synthesis of VO2(B) nanostructures for lithium-ion battery application. Ceram Int, 2013, 39: 6199–6206

    Article  Google Scholar 

  229. Shi Y, Chou S L, Wang J Z, et al. In-situ hydrothermal synthesis of graphene woven VO2 nanoribbons with improved cycling performance. J Power Sources, 2013, 244: 684–689

    Article  Google Scholar 

  230. Ni J, Jiang W T, Yu K, et al. Hydrothermal synthesis of VO2(B) nanostructures and application in aqueous Li-ion battery. Electrochim Acta, 2011, 56: 2122–2126

    Article  Google Scholar 

  231. Wang Q, Pan J, Li M, et al. VO2(B) nanosheets as a cathode material for Li-ion battery, J Mater Sci Technol, 2015, 31: 630–633

    Article  Google Scholar 

  232. Rahman M M, Wang J Z, Idris N H, et al. Enhanced lithium storage in a VO2(B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process. Electrochim Acta, 2010, 56: 693–699

    Article  Google Scholar 

  233. Mai L Q, Wei Q L, An Q Y, et al. Nanoscroll buffered hybrid nanostructural VO2(B) cathodes for high-rate and long-life lithium storage. Adv Mater, 2013, 25: 2969–2973

    Article  Google Scholar 

  234. Zhao Q Q, Jiao L F, Peng W X, et al. Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability. J Power Sources, 2012, 199: 350–354

    Article  Google Scholar 

  235. Nethravathi C, Viswanath B, Michael J, et al. Hydrothermal synthesis of a monoclinic VO2 nanotube–graphene hybrid for use as cathode material in lithium ion batteries. Carbon, 2012, 50: 4839–4846

    Article  Google Scholar 

  236. Liu H M, Wang Y G, Yang W S, et al. A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries. Electrochim Acta, 2011, 56: 1392–1398

    Article  Google Scholar 

  237. Liu H M, Wang Y G, Wang K X, et al. Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J Power Sources, 2009, 192: 668–673

    Article  Google Scholar 

  238. Qiao Y Q, Tu J P, Wang X L, et al. Self-assembled synthesis of hierarchical wafer-liked porous Li-V-O composites as cathode materials for lithium ion batteries. J Phys Chem C, 2011, 115: 25508–25518

    Article  Google Scholar 

  239. Huang S, Lu Y, Wang T Q, et al. Polyacrylamide-assisted freeze drying synthesis of hierarchical plate-arrayed LiV3O8 for high-rate lithium-ion batteries. J Power Sources, 2013, 235: 256–264

    Article  Google Scholar 

  240. Huang S, Tu J P, Jian X M, et al. Enhanced electrochemical properties of Al2O3-coated LiV3O8 cathode materials for high-power lithium-ion batteries. J Power Sources, 2014, 245: 698–705

    Article  Google Scholar 

  241. Huang S, Wang X L, Lu Y, et al. Facile synthesis of cookies-shaped LiV3O8 cathode materials with good cycling performance for lithium-ion batteries. J Alloy Compd, 2014, 584: 41–46

    Article  Google Scholar 

  242. Jian X M, Tu J P, Qiao Y Q, et al. Synthesis and electrochemical performance of LiVO3 cathode materials for lithium ion batteries. J Power Sources, 2013, 236: 33–38

    Article  Google Scholar 

  243. Jian X M, Wenren H Q, Huang S, et al. Oxalic acid-assisted combustion synthesized LiVO3 cathode material for lithium ion batteries. J Power Sources, 2014, 246: 417–422

    Article  Google Scholar 

  244. Kawakita J, Miura T, Kishi T. Lithium insertion and extraction kinetics of Li1+x V3O8. J Power Sources, 1999, 83: 79–83

    Article  Google Scholar 

  245. Kawakita J, Kato T, Katayama Y. Lithium insertion behavior of Li1+x V3O8 with different degrees of crystallinity. J Power Sources, 1999, 81-82: 448–453

    Article  Google Scholar 

  246. Qiao Y Q, Wang X L, Tu J P, et al. Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries. J Power Sources, 2012, 198: 287–293

    Article  Google Scholar 

  247. Liang S Q, Qin M L, Liu J, et al. Facile synthesis of multiwalled carbon nanotube–LiV3O8 nanocomposites as cathode materials for Li-ion batteries. Mater Lett, 2013, 93: 435–438

    Article  Google Scholar 

  248. Liu L L, Wang X J, Zhu Y S, et al. Polypyrrole-coated LiV3O8-nanocomposites with good electrochemical performance as anode material for aqueous rechargeable lithium batteries. J Power Sources, 2013, 224: 290–294

    Article  Google Scholar 

  249. Ren X Z, Hu S M, Shi C, et al. Preparation of Ga-doped lithium trivanadates as cathode materials for lithium-ion batteries. Electrochim Acta, 2012, 63: 232–237

    Article  Google Scholar 

  250. Li Y, Bai W Q, Wang D H, et al. Synthesis and electrochemical performance of 0.6Li3V2(PO4)3·0.4Li-V-O composite cathode material for lithium ion batteries. Electrochim Acta, 2015, 161: 252–260

    Article  Google Scholar 

  251. Li Y, Bai W Q, Zhang Y D, et al. Synthesis and electrochemical performance of lithium vanadium phosphate and lithium vanadium oxide composite cathode material for lithium ion batteries. J Power Sources, 2015, 282: 100–108

    Article  Google Scholar 

  252. Yang G, Hou W H, Sun Z Z, et al. A novel inorganic-organic electrolyte with high conductivity: Insertion of poly(ethylene) oxide into LiV3O8 in one step. J Mater Chem, 2005, 15: 1369–1374

    Article  Google Scholar 

  253. Guo H P, Liu L, Shu H B. Synthesis and electrochemical performance of LiV3O8/polythiophene composite as cathode materials for lithium ion batteries. J Power Sources, 2014, 247: 117–126

    Article  Google Scholar 

  254. Park K I, Song H M, Kim Y, et al. Electrochemical preparation and characterization of V2O5/polyaniline composite film cathodes for Li battery. Electrochim Acta, 2010, 55: 8023–8029

    Article  Google Scholar 

  255. Wong H P, Dave B C, Leroux F, et al. Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels. J Mater Chem, 1998, 8: 1019–1027

    Article  Google Scholar 

  256. Feng Y, Li Y, Hou F. Preparation and electrochemical properties of Cr doped LiV3O8 cathode for lithium ion batteries. Mater Lett, 2009, 63: 1338–1340

    Article  Google Scholar 

  257. Yang Z, Hu J, Chen Z, et al. Sol-gelassisted, fast and low-temperature synthesis of La-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. RSC Adv, 2015, 5: 17924–17930

    Article  Google Scholar 

  258. Li Y, Xie D, Zhang Y D, et al. Synthesis and electrochemical performance of xLiV3O8·yLi3V2(PO4)3/rGO composite cathode materials for lithium ion batteries. J Mater Chem A, 2015, 3, 14731–14740

    Article  Google Scholar 

  259. Song H Q, Liu Y G, Zhang C P, et al. Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. J Mater Chem A, 2015, 3: 3547–3558

    Article  Google Scholar 

  260. Jiao L F, Li H X, Yuan H T, et al. Preparation of copper-doped LiV3O8 composite by a simple addition of the doping metal as cathode materials for lithium-ion batteries. Mater Lett, 2008, 62: 3937–3939

    Article  Google Scholar 

  261. Liu Y M, Zhou X C, Guo Y L. Effects of fluorine doping on the electrochemical properties of LiV3O8 cathode material. Electrochim Acta, 2009, 54: 3184–3190

    Article  Google Scholar 

  262. Wu H M, Tu J P, Chen X T, et al. Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J Solid State Electrochem, 2007, 11: 173–176

    Article  Google Scholar 

  263. Wu H M, Tu J P, Chen X T, et al. Synthesis and characterization of abundant Ni-doped LiNixMn2–x O4 (x=0.1–0.5) powders by spraydrying method. Electrochim Acta, 2006, 51: 4148–4152

    Article  Google Scholar 

  264. Xue Y, Wang Z B, Yu F D, et al. Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. J Mater Chem A, 2014, 2: 4185–4191

    Article  Google Scholar 

  265. Liu G Y, Kong X, Sun H Y, et al. A facile template method to synthesize significantly improved LiNi0.5Mn1.5O4 using corn stalk as a bio-template. Electrochim Acta, 2014, 141: 141–148

    Article  Google Scholar 

  266. Kong X, Sun H Y, Wang Q B, et al. Improvement in the electrochemical properties of LiNi0.5Mn1.5O4 lithium-ion battery cathodes prepared by a modified low temperature solution combustion synthesis. Ceram Int, 2014, 40: 11611–11617

    Article  Google Scholar 

  267. Jin Y C, Duh J G. Feasible nonaqueous route to synthesize a highvoltage spinel cathode material for lithium ion batteries. RSC Adv, 2015, 5: 6919–6924

    Article  Google Scholar 

  268. Wu B R, Ren Y H, Mu D B, et al. Electrochemical performance of 5 V LiNi0.5Mn1.5O4 cathode modified with lithium carbonate addition in electrolyte. J Power Sources, 2014, 272: 183–189

    Article  Google Scholar 

  269. Deng H F, Nie P, Luo H F, et al. Highly enhanced lithium storage capability of LiNi0.5Mn1.5O4 by coating with Li2TiO3 for Li-ion batteries. J Mater Chem A, 2014, 2: 18256–18262

    Article  Google Scholar 

  270. Zhang Q T, Mei J T, Wang X M, et al. High performance spinel LiNi0.5Mn1.5O4 cathode material by lithium polyacrylate coating for lithium ion battery. Electrochim Acta, 2014, 143: 265–271

    Article  Google Scholar 

  271. Niketic S, Couillard M, MacNeil D, et al. Improving the performance of high voltage LiNi0.5Mn1.5O4 cathode material by carbon coating. J Power Sources, 2014, 271: 285–290

    Article  Google Scholar 

  272. Zhu C Y, Akiyama T. Designed synthesis of LiNi0.5Mn1.5O4 hollow microspheres with superior electrochemical properties as highvoltage cathode materials for lithium-ion batteries. RSC Adv, 2014, 4: 10151–10156

    Article  Google Scholar 

  273. Wu W W, Xiang H F, Zhong G B, et al. Ordered LiNi0.5Mn1.5O4 hollow microspheres as high-rate 5 V cathode materials for lithium ion batteries. Electrochim Acta, 2014, 119: 206–213

    Article  Google Scholar 

  274. Zhou L, Zhao D Y, Lou X W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem Int Ed, 2012, 124: 243–245

    Article  Google Scholar 

  275. Liu Y Z, Zhang M H, Xia Y G, et al. One-step hydrothermal method synthesis of core-shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. J Power Sources, 2014, 256: 66–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangPing Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Xia, X. et al. High-energy cathode materials for Li-ion batteries: A review of recent developments. Sci. China Technol. Sci. 58, 1809–1828 (2015). https://doi.org/10.1007/s11431-015-5933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5933-x

Keywords

Navigation