Skip to main content
Log in

Non-Fourier heat conduction in a thin gold film heated by an ultra-fast-laser

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Based on the dual-phase-lagging (DPL) heat conduction model, the Cattaneo-Vernotte (CV) model and the improved CV model we investigate the one-dimensional heat conduction in gold films with nano-scale thickness exposed to an ultra-fast laser heating. The influence of system parameters on the temperature field is explored. We find that for all the non-Fourier heat conduction models considered in this work, a larger Knudsen number normally leads to a higher temperature. For the DPL model, the large ratio of the phase lag of temperature gradient to the phase lag of heat flux reduces the maximum temperature and shortens the time for the system to reach its steady state. The CV model and the improved CV model lead to the similar thermal wave behavior of the temperature field, but the thermal wave speeds for these two models are different, especially for large Knudsen numbers. When the phase lag of temperature gradient is smaller, the difference between the DPL model and the improved CV model is not significant, but for the large phase lag of temperature gradient the difference becomes quite significant, especially for the large Knudsen number. In addition, the effect of the surface accommodation coefficient, which is a parameter in the slip boundary condition, on the temperature field of the gold film heated by ultra-fast laser pulses is investigated based on the DPL model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd I W. Laser Processing of Thin Films and Microstructures. New York: Springer, 1989

    Google Scholar 

  2. Narayan J, Godbole V P, White G W. Laser method for synthesis and processing of continuous diamond films on nondiamound substrates. Science, 1991, 52: 416–418

    Article  Google Scholar 

  3. Chryssolouris G. Laser Machining, Theory and Practice. New York: Springer, 1991

    Google Scholar 

  4. Qiu T Q, Tien C L. Short-pulse laser heating on metals. Int J Heat Mass Tran, 1992, 35: 719–726

    Article  Google Scholar 

  5. Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals. J Heat Trans-T ASME, 1993, 115: 835–841

    Article  Google Scholar 

  6. Lee Y M, Tsai T W. Ultra-fast pulse-laser heating on a two-layered semi-infinite material with interfacial contact conductance. Int Commun Heat Mass, 2007, 34: 45–51

    Article  Google Scholar 

  7. Chen J K, Beraun J E, Tham C L. Ultrafast thermoelasticity for short-pulse laser heating. Int J Eng Sci, 2004, 42: 793–807

    Article  Google Scholar 

  8. Huang J, Zhang Y W, Chen J K. Ultrafast solid-liquid-vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses. Int J Heat Mass Tran, 2009, 52: 3091–3100

    Article  MATH  Google Scholar 

  9. Zhang Y, Faghri A, Buckley C W, et al. Three-dimensional sintering of two-component metal powders with stationary and moving laser beams. J Heat Trans-T ASME, 2000, 122: 150–158

    Article  Google Scholar 

  10. Zacharia T, David S A, Vitek J M, et al. Heat transfer during Nd: Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels. Metall Trans A, 1989, 20: 957–967

    Article  Google Scholar 

  11. Shiomi M, Yoshidome A, Abe F, et al. Finite element analysis of melting and solidifying processes in laser rapid prototyping of metallic powders. Int J Mach Tool Manu, 1999, 39: 237–252

    Article  Google Scholar 

  12. Ganesh R K, Faghi A, Hahn Y. A generalized thermal modeling for laser drilling process: 1. Mathematical modeling and numerical methodology. Int J Heat Mass Tran, 1997, 40: 3351–3360

    Article  MATH  Google Scholar 

  13. Agarwala M, Bourell D, Beaman J, et al. Direct selective laser sintering of metals. Rapid Prototyping J, 1995, 1: 26–36

    Article  Google Scholar 

  14. Iranov D S, Zhigilei L V. Kinetic limit of heterogeneous melting in metals. Phys Rev Lett, 2007, 98: 1957011–1957014

    Google Scholar 

  15. Chen J K, Tzou D Y, Beraun J E. A semiclassical two-temperature model for ultrafast laser heating. Int J Heat Mass Tran, 2006, 49: 307–316

    Article  MATH  Google Scholar 

  16. Yilbas B S, Al-Dweik A Y. Analytical solution of hypobolic heat conduction equation in relation to laser short-pulse heating. Physica B, 2011, 406: 1550–1555

    Article  Google Scholar 

  17. Gan Y, Chen J K. Combined continuum-atomistic modeling of ultrashort-pulsed laser irradiation of silicon. Appl Phys A-Mater, 2011, 105: 427–437

    Article  Google Scholar 

  18. Amer M S, El-Ashry M A, Dosser L R, et al. Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers. Appl Surf Sci, 2005, 242: 162–167

    Article  Google Scholar 

  19. Korfiatis D P, Thoma K A, Vardaxoglou J C. Numerical modeling of ultrashort-pulse laser ablation of silicon. Appl Surf Sci, 2009, 255: 7605–7609

    Article  Google Scholar 

  20. Gan Y, Chen J K. Thermo-mechanical wave propagation in gold films induced by ultrashort laser pulses. Mech Mater, 2010, 42: 491–501

    Article  Google Scholar 

  21. Elsayed-Ali H E, Norris T B, Pessot M A, et al. Time-resolved observation of electron±phonon relaxation in copper. Phys Rev Lett, 1987, 58: 1212–1215

    Article  Google Scholar 

  22. Brorson S D, Fujimoto J G, Ippen E P. Femtosecond electron heat-transport dynamics in thin gold film. Phys Rev Lett, 1987, 59: 1962–1965

    Article  Google Scholar 

  23. Qiu T Q, Tien C L. Femtosecond laser heating of multilayered metals-I. Analysis. Int J Heat Mass Tran, 1994, 37: 2789–2797

    Article  Google Scholar 

  24. Bugajskia M, Tomasz S T, Dorota W, et al. Thermoreflectance study of facet heating in semiconductor lasers Materials. Mat Sci Semicon Proc, 2006, 9: 188–197

    Article  Google Scholar 

  25. Ocan J L, Morales M, Molpeceres C. Short pulse laser microforming of thin metal sheets for MEMS manufacturing. Appl Surf Sci, 2007, 254: 997–1001

    Article  Google Scholar 

  26. Tzou D Y. Macro- to Microscale Heat Transfer: The Lagging Behavior. Washington, DC: Taylor & Francis, 1996

    Google Scholar 

  27. Xu M, Guo J, Wang L, et al. Thermal wave interference as the origin of the overshooting phenomenon in dual-phase-lagging heat conduction. Int J Therm Sci, 2011, 50: 825–830

    Article  Google Scholar 

  28. Joshi A A, Majumdar A. Transient ballistic and diffusive phonon heat transport in thin films. J Appl Phys, 1993, 74: 31

    Article  Google Scholar 

  29. Ghai S S, Kim W T, Jhon M S. A novel heat transfer model and its application to information storage systems. J Appl Phys, 2005, 97: 10P703

    Article  Google Scholar 

  30. Cattaneo C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus, 1958, 247: 431–435

    MathSciNet  Google Scholar 

  31. Vernotte P. Some possible complications in the phenomena of thermal conduction. Compte Rendus, 1961, 252: 2190–2193

    MathSciNet  Google Scholar 

  32. Tzou D Y. The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Tran, 1995, 38: 3231–3234

    Article  Google Scholar 

  33. Xu M, Wang L. Single- and dual-phase-lagging heat conduction models in moving media. J Heat Trans-T ASME, 2008, 130: 1–6

    Google Scholar 

  34. Wang L, Xu M. Well-posedness and solution structure of dual-phaselagging heat conduction. Int J Heat Mass Tran, 2005, 48: 1165–1171

    Google Scholar 

  35. Xu M, Wang L. Thermal oscillation and resonance in dual-phaselagging heat conduction. Int J Heat Mass Tran, 2002, 45: 1055–1061

    Article  MATH  Google Scholar 

  36. Shen B, Zhang P. Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model. Int J Heat Mass Tran, 2008, 51: 1713–1716

    Article  MATH  Google Scholar 

  37. Ghazanfarian J, Abbassi A. Effect of boundary phonon scattering on dual-phase-lag model to simulate micro-and nano-scale heat conduction. Int J Heat Mass Tran, 2009, 52: 3706–3711

    Article  MATH  Google Scholar 

  38. Alvarez F X, Jou D. Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Appl Phys Lett, 2007, 90: 083109

    Article  Google Scholar 

  39. Alvarez F X, Jou D. Size and frequency dependence of effective thermal conductivity in nanosystems. J Appl Phys, 2008, 103: 094321

    Article  Google Scholar 

  40. Tzou D Y, Chiu K S. Temperature-dependent thermal lagging in ultrafast laser heating. Int J Heat Mass Tran, 2001, 44: 1725–1732

    Article  MATH  Google Scholar 

  41. Tzou D Y, Chen J K, Beraun J E. Hot-electron blast induced by ultra short-pulsed lasers in layered media. Int J Heat Mass Tran, 2002, 45: 3369–3382

    Article  MATH  Google Scholar 

  42. Torii S C, Yang W J. Heat transfer mechanisms in thin film with laser heat source. Int J Heat Mass Tran, 2005, 48: 537–544

    Article  MATH  Google Scholar 

  43. Chen G. Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J Heat Trans-T ASME, 2002, 124: 320–327

    Article  Google Scholar 

  44. Alvarez F X, Jou D. Boundary conditions and evolution of ballistic heat transport. J Heat Trans-T ASME, 2010, 132: 012404 1–6

    Article  Google Scholar 

  45. Hua Y C, Cao B Y. Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. Int J Heat Mass Tran, 2014, 78: 755–759

    Article  Google Scholar 

  46. Xu M T. Slip boundary condition of heat flux in Knudsen layers. P Roy Soc Lond A Mat, 2013, 470: 20130578

    Article  Google Scholar 

  47. Amon C H, Ghai S S, Kim W T, et al. Modeling of nanoscale transport phenomena: Application to information technology. Physica A, 2006, 362: 36–41

    Article  Google Scholar 

  48. Zhang M K, Cao B Y, Guo Y C. Numerical studies on damping of thermal waves. Int J Therm Sci, 2014, 84: 9–20

    Article  Google Scholar 

  49. Jou D, Casas-Vázquez J, Lebon G. Extended irreversible thermodynamics revisited (1988–98). Rep Prog Phys, 1999, 62: 1035–1142

    Article  Google Scholar 

  50. Jou D, Casas-Vázquez J, Lebon G. Extended Irreversible Thermodynamics. Springer: Berlin, 2003

    Google Scholar 

  51. Jou D, Cimmelli V A, Sellitto A. Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys Lett A, 2009, 373: 4386–4392

    Article  MATH  Google Scholar 

  52. Xu M T. Thermodynamic basis of dual-phase-lagging heat conduction. J Heat Trans-T ASME, 2011, 133: 041401 1–7

    Google Scholar 

  53. Makse H A, Kurchan J. Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature, 2002, 415: 614–617

    Article  Google Scholar 

  54. Lebon G, Machrafi H, Grmela M, et al. An extended thermodynamic model of transient heat conduction at sub-continuum scales. P Roy Soc Lond A Mat, 2011, 467: 3241–3256

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingTian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Xu, M. Non-Fourier heat conduction in a thin gold film heated by an ultra-fast-laser. Sci. China Technol. Sci. 58, 638–649 (2015). https://doi.org/10.1007/s11431-015-5767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5767-6

Keywords

Navigation