Elastic wave propagation and scattering in prestressed porous rocks

Abstract

Poro-acoustoelastic theory has made a great progress in both theoretical and experimental aspects, but with no publications on the joint research from theoretical analyses, experimental measurements, and numerical validations. Several key issues challenge the joint research with comparisons of experimental and numerical results, such as digital imaging of heterogeneous poroelastic properties, estimation of acoustoelastic constants, numerical dispersion at high frequencies and strong heterogeneities, elastic nonlinearity due to compliant pores, and contamination by boundary reflections. Conventional poro-acoustoelastic theory, valid for the linear elastic deformation of rock grains and stiff pores, is modified by incorporating a dual-porosity model to account for elastic nonlinearity due to compliant pores subject to high-magnitude loading stresses. A modified finite-element method is employed to simulate the subtle effect of microstructures on wave propagation in prestressed digital cores. We measure the heterogeneity of samples by extracting the autocorrelation length of digital cores for a rough estimation of scattering intensity. We conductexperimental measurements with a fluid-saturated sandstone sample under a constant confining pressure of 65 MPa and increasing pore pressures from 5 to 60 MPa. Numerical simulations for ultrasound propagation in the prestressed fluid-saturated digital core of the sample are followed based on the proposed poro-acoustoelastic model with compliant pores. The results demonstrate a general agreement between experimental and numerical waveforms for different stresses, validating the performance of the presented modeling scheme. The excellent agreement between experimental and numerical coda quality factors demonstrates the applicability for the numerical investigation of the stress-associated scattering attenuation in prestressed porous rocks.

This is a preview of subscription content, log in to check access.

References

  1. Aki K, Chouet B. 1975. Origin of coda waves: Source, attenuation, and scattering effects. J Geophys Res, 80: 3322–3342

    Article  Google Scholar 

  2. Aki K. 1992. Scattering conversions P to S versus S to P. Bull Seismol Society Amer, 82: 1969–1972

    Google Scholar 

  3. Arns C H, Knackstedt M A, Pinczewski W V, Garboczi E J. 2002. Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics, 67: 1396–1405

    Article  Google Scholar 

  4. Arntsen B, Carcione J M. 2001. Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner Sandstone. Geophysics, 66: 890–896

    Article  Google Scholar 

  5. American Society for the Testing of Materials. 2002. Practice for Preparing Rock Core Specimens and Determining Dimensional Shape Tolerances. ASTM Standard 4543. American Society for the Testing of Materials, Philadelphia, PA

    Google Scholar 

  6. Ba J, Carcione J M, Cao H, Yao F, Du Q. 2013. Poro-acoustoelasticity of fluid-saturated rocks. Geophys Prospect, 61: 599–612

    Article  Google Scholar 

  7. Berryman J G, Pride S R. 1998. Volume averaging, effective stress rules, and inversion for microstructural response of multicomponent porous media. Int J Solids Struct, 35: 4811–4843

    Article  Google Scholar 

  8. Carcione J M. 2007. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. 2nd ed. Elsevier

    Google Scholar 

  9. Carcione J M, Helle H B. 1999. Numerical solution of the poroviscoelastic wave equation on a staggered mesh. J Comput Phys, 154: 520–527

    Article  Google Scholar 

  10. Carcione J M, Cavallini F. 2002. Poisson's ratio at high pore pressure. Geophys Prospect, 50: 97–106

    Article  Google Scholar 

  11. Carcione J M, Helle H B, Pham N H. 2003a. White's model for wave propagation in partially saturated rocks: Comparison with poroelastic numerical experiments. Geophysics, 68: 1389–1398

    Article  Google Scholar 

  12. Carcione J M, Helbig K, Helle H B. 2003b. Effects of pressure and saturating fluid on wave velocity and attenuation in anisotropic rocks. Int J Rock Mech Min Sci, 40: 389–403

    Article  Google Scholar 

  13. Carcione J M, Picotti S. 2006. P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties. Geophysics, 71: O1–O8

    Article  Google Scholar 

  14. Carcione J M, Quiroga-Goode G. 1995. Some aspects of the physics and numerical modeling of Biot compressional waves. J Comp Acous, 3: 261–280

    Article  Google Scholar 

  15. Cerit M, Genel K, Eksi S. 2009. Numerical investigation on stress concentration of corrosion pit. Eng Failure Anal, 16: 2467–2472

    Article  Google Scholar 

  16. Cheng C H, Toksöz M N. 1979. Inversion of seismic velocities for the pore aspect ratio spectrum of a rock. J Geophys Res, 84: 7533–7543

    Article  Google Scholar 

  17. Dai N, Vafidis A, Kanasewich E R. 1995. Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method. Geophysics, 60: 327–340

    Article  Google Scholar 

  18. David E C, Zimmerman R W. 2012. Pore structure model for elastic wave velocities in fluid-saturated sandstones. J Geophys Res, 117: B07210

    Article  Google Scholar 

  19. Deng J X, Zhou H, Wang H, Zhao J G, Wang S X. 2015. The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves (in Chinese). Chin J Geophys, 58: 3389–3400

    Google Scholar 

  20. Dvorkin J, Derzhi N, Diaz E, Fang Q. 2011. Relevance of computational rock physics. Geophysics, 76: E141–E153

    Article  Google Scholar 

  21. Dvorkin J, Derzhi N, Armbruster M, Fang Q, Wojcik Z. 2012. Method for determining rock physics relationships using computer tomographic images thereof. U.S. Patent No. 8,155,377. Washington D C: U.S. Patent and Trademark Office

    Google Scholar 

  22. Dvorkin J, Mavko G, Nur A. 1991. The effect of cementation on the elastic properties of granular material. Mech Mater, 12: 207–217

    Article  Google Scholar 

  23. Franklin J A, Dusseault M B. 1989. Rock Engineering. New York: McGraw-Hill

    Google Scholar 

  24. Fu B Y, Fu L Y. 2017. Poro-acoustoelastic constants based on Padé approximation. J Acoust Soc Am, 142: 2890–2904

    Article  Google Scholar 

  25. Fu B Y, Fu L Y. 2018. Poro-acoustoelasticity with compliant pores for fluid-saturated rocks. Geophysics, 83: WC1–WC14

    Article  Google Scholar 

  26. Fu B Y, Fu L Y, Wei W, Zhang Y. 2016. Boundary-reflected waves and ultrasonic coda waves in rock physics experiments. Appl Geophys, 13: 667–682

    Article  Google Scholar 

  27. Fu L Y, Zhang Y, Pei Z, Wei W, Zhang L. 2014. Poroelastic finite-difference modeling for ultrasonic waves in digital porous cores. Earthq Sci, 27: 285–299

    Article  Google Scholar 

  28. Fukushima Y, Nishizawa O, Sato H, Ohtake M. 2003. Laboratory study on scattering characteristics of shear waves in rock samples. Bull Seismol Soc Am, 93: 253–263

    Article  Google Scholar 

  29. Galvin R J, Gurevich B. 2007. Scattering of a longitudinal wave by a circular crack in a fluid-saturated porous medium. Int J Solids Struct, 44: 7389–7398

    Article  Google Scholar 

  30. Galvin R J, Gurevich B. 2009. Effective properties of a poroelastic medium containing a distribution of aligned cracks. J Geophys Res, 114: B07305

    Article  Google Scholar 

  31. Garboczi E J, Day A R. 1995. An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimensional results for composites with equal phase Poisson ratios. J Mech Phys Solids, 43: 1349–1362

    Article  Google Scholar 

  32. Gei D, Carcione J M. 2003. Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophys Prospect, 51: 141–158

    Article  Google Scholar 

  33. Guo M. 2008. Response of seismic velocity and attenuation to stress changes in rocks (in Chinese). Doctoral Dissertation. Beijing: Institute of Geology and geophysics, Chinese Academy of Sciences

    Google Scholar 

  34. Guo M Q, Fu L Y. 2007. Stress associated coda attenuation from ultrasonic waveform measurements. Geophys Res Lett, 34: L09307

    Article  Google Scholar 

  35. Guo M Q, Fu L Y, Ba J. 2009. Comparison of stress-associated coda attenuation and intrinsic attenuation from ultrasonic measurements. Geophys J Int, 178: 447–456

    Article  Google Scholar 

  36. Guo J, Shuai D, Wei J, Ding P, Gurevich B. 2018. P-wave dispersion and attenuation due to scattering by aligned fluid saturated fractures with finite thickness: Theory and experiment. Geophys J Int, 215: 2114–2133

    Article  Google Scholar 

  37. Gurevich B. 1996. On: “Wave Propagation in heterogeneous, porous media: A velocity-stress, finite difference method” by N. Dai, A. Vafidis, and E. R. Kanasewich (March-April 1995 GEOPHYSICS, p. 327–340). Geophysics, 61: 1230–1231

    Article  Google Scholar 

  38. Gurevich B, Kelder O, Smeulders D M J. 1999. Validation of the slow compressional wave in porous media: Comparison of experiments and numerical simulations. Transp Porous Media, 36: 149–160

    Article  Google Scholar 

  39. Gurevich B, Makarynska D, de Paula O B, Pervukhina M. 2010. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics, 75: N109–N120

    Article  Google Scholar 

  40. Guéguen Y, Sarout J. 2011. Characteristics of anisotropy and dispersion in cracked medium. Tectonophysics, 503: 165–172

    Article  Google Scholar 

  41. Helle H B, Pham N H, Carcione J M. 2003. Velocity and attenuation in partially saturated rocks: Poroelastic numerical experiments. Geophys Prospect, 51: 551–566

    Article  Google Scholar 

  42. Hu J, Fu L Y, Wei W, Zhang Y. 2018. Stress-associated intrinsic and scattering attenuation from laboratory ultrasonic measurements on shales. Pure Appl Geophys, 175: 929–962

    Article  Google Scholar 

  43. Hu S Z, Fu L Y, Pei Z L. 2009. A boundary element method for the 2-D wave equation in fluid-saturated porous media (in Chinese). Chin J Geophys, 52: 2364–2369

    Google Scholar 

  44. Hudson J A, Pointer T, Liu E. 2001. Effective-medium theories for fluid-saturated materials with aligned cracks. Geophys Prospect, 49: 509–522

    Article  Google Scholar 

  45. Johnson P A, McCall K R. 1994. Observation and implications of nonlinear elastic wave response in rock. Geophys Res Lett, 21: 165–168

    Article  Google Scholar 

  46. Johnson PA, Shankland T J. 1989. Nonlinear generation of elastic waves in granite and sandstone: Continuous wave and travel time observations. J Geophys Res, 94: 17729–17733

    Article  Google Scholar 

  47. Kawahara J, Yamashita T. 1992. Scattering of elastic waves by a fracture zone containing randomly distributed cracks. Pure Appl Geophys, 139: 121–144

    Article  Google Scholar 

  48. Kelder O, Smeulders D M J. 1997. Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone. Geophysics, 62: 1794–1796

    Article  Google Scholar 

  49. Kubair D V, Bhanu-Chandar B. 2008. Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. Int J Mech Sci, 50: 732–742

    Article  Google Scholar 

  50. Klimeš L. 2002. Correlation functions of random media. Pure Appl Geophys, 159: 1811–1831

    Article  Google Scholar 

  51. Ma R, Ba J. 2020. Coda and intrinsic attenuations from ultrasonic measurements in tight siltstones. J Geophys Res Solid Earth, 125: e2019JB018825

    Google Scholar 

  52. Martin R, Komatitsch D, Ezziani A. 2008. An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media. Geophysics, 73: T51–T61

    Article  Google Scholar 

  53. Mason T G, Wilking J N, Meleson K, Chang C B, Graves S M. 2006. Nanoemulsions: Formation, structure, and physical properties. J Phys-Condens Matter, 18: R635–R666

    Article  Google Scholar 

  54. Matsunami K. 1991. Laboratory tests of excitation and attenuation of coda waves using 2-D models of scattering media. Phys Earth Planet Inter, 67: 36–47

    Article  Google Scholar 

  55. Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook: Tools for Seismic Analysis of Oorous Media. Cambridge: Cambridge University Press. 113–164

    Google Scholar 

  56. Meegan Jr. G D, Johnson P A, Guyer R A, McCall K R. 1993. Observations of nonlinear elastic wave behavior in sandstone. J Acoust Soc Am, 94: 3387–3391

    Article  Google Scholar 

  57. Meng W, Fu L Y. 2017. Seismic wavefield simulation by a modified finite element method with a perfectly matched layer absorbing boundary. J Geophys Eng, 14: 852–864

    Article  Google Scholar 

  58. Nishizawa O, Satoh T, Lei X, Kuwahara Y. 1997. Laboratory studies of seismic wave propagation in inhomogeneous media using a laser Doppler vibrometer. Bull Seismol Soc Amer, 87: 809–823

    Google Scholar 

  59. Pervukhina M, Gurevich B, Dewhurst D N, Siggins A F. 2010. Applicability of velocity-Stress relationships based on the dual porosity concept to isotropic porous rocks. Geophys J Int, 181: 1473–1479

    Google Scholar 

  60. Picotti P, Aebersold R, Domon B. 2007. The implications of proteolytic background for shotgun proteomics. Mol Cell Proteomics, 6: 1589–1598

    Article  Google Scholar 

  61. Pham N H, Carcione J M, Helle H B, Ursin B. 2002. Wave velocities and attenuation of shaley sandstones as a function of pore pressure and partial saturation. Geophys Prospecting, 50: 615–627

    Article  Google Scholar 

  62. Pride S R, Berryman J G, Harris J M. 2004. Seismic attenuation due to wave-induced flow. J Geophys Res, 109: B01201

    Article  Google Scholar 

  63. Roberts A P, Garboczi E J. 2000. Elastic properties of model porous ceramics. J Am Ceramic Soc, 83: 3041–3048

    Article  Google Scholar 

  64. Saenger E H, Enzmann F, Keehm Y, Steeb H. 2011. Digital rock physics: Effect of fluid viscosity on effective elastic properties. J Appl Geophys, 74: 236–241

    Article  Google Scholar 

  65. Saenger E H, Shapiro S A. 2002. Effective velocities in fractured media: A numerical study using the rotated staggered finite-difference grid. Geophys Prospect, 50: 183–194

    Article  Google Scholar 

  66. Sato H. 1977. Energy propagation including scattering effects single isotropic scattering approximation. J Phys Earth, 25: 27–41

    Article  Google Scholar 

  67. Sayers C M, Ebrom D A. 1997. Seismic traveltime analysis for azimuthally anisotropic media: Theory and experiment. Geophysics, 62: 1570–1582

    Article  Google Scholar 

  68. Schoenberg M. 2002. Time-dependent anisotropy induced by pore pressure variation in fractured rock. J Seismic Explor, 11: 83–105

    Google Scholar 

  69. Shapiro S A. 2003. Elastic piezosensitivity of porous and fractured rocks. Geophysics, 68: 482–486

    Article  Google Scholar 

  70. Shapiro S A, Kaselow A. 2005. Porosity and elastic anisotropy of rocks under tectonic stress and pore-pressure changes. Geophysics, 70: N27–N38

    Article  Google Scholar 

  71. Sinha B K, Plona T J. 2001. Wave propagation in rocks with elastic-plastic deformations. Geophysics, 66: 772–785

    Article  Google Scholar 

  72. Sivaji C, Nishizawa O, Kitagawa G, Fukushima Y. 2002. A physical-model study of the statistics of seismic waveform fluctuations in random heterogeneous media. Geophys J Int, 148: 575–595

    Article  Google Scholar 

  73. Stacey G P, Gladwin M T. 1981. Rock mass characterisation by velocity and Q measurement with ultrasonics. Anelasticity Earth, 4: 78–82

    Article  Google Scholar 

  74. Thomsen L. 1995. Elastic anisotropy due to aligned cracks in porous rock. Geophys Prospect, 43: 805–829

    Article  Google Scholar 

  75. Toksöz M N, Johnston D H, Timur A. 1979. Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics, 44: 681–690

    Article  Google Scholar 

  76. Wang X, Zhang H, Wang D. 2003. Modelling seismic wave propagation in heterogeneous poroelastic media using a high-order staggered finite-difference method. Chin J Geophys, 46: 1206–1217

    Article  Google Scholar 

  77. Wei W, Fu L Y. 2014. Monte carlo simulation of stress-associated scattering attenuation from laboratory ultrasonic measurements. Bull Seismol Soc Am, 104: 931–943

    Article  Google Scholar 

  78. Wenzlau F, Müller T M. 2009. Finite-difference modeling of wave propagation and diffusion in poroelastic media. Geophysics, 74: T55–T66

    Article  Google Scholar 

  79. Winkler K W, Liu X. 1996. Measurements of third-order elastic constants in rocks. J Acoust Soc Am, 100: 1392–1398

    Article  Google Scholar 

  80. Winkler K W, McGowan L. 2004. Nonlinear acoustoelastic constants of dry and saturated rocks. J Geophys Res, 109: B10204

    Article  Google Scholar 

  81. Wu R S. 1989. Seismic wave scattering. In: James D, ed. Encyclopedia of Solid Earth Geophysics. New York: Van Nostrand Reinhold. 1166–1187

    Google Scholar 

  82. Wu R S, Aki K. 1985. The fractal nature of the inhomogeneities in the lithosphere evidenced from seismic wave scattering. Pure Appl Geophys, 123: 805–818

    Article  Google Scholar 

  83. Wu R S, Aki K. 1988. Multiple scattering and energy transfer of seismic waves—Separation of scattering effect from intrinsic attenuation II. Application of the theory to Hindu Kush region. Pure Appl Geophys, 128: 49–80

    Article  Google Scholar 

  84. Zhang W H, Fu L Y, Zhang Y, Jin W J. 2016. Computation of elastic properties of 3D digital cores from the Longmaxi shale. Appl Geophys, 13: 364–374

    Article  Google Scholar 

  85. Zhang Y, Fu L Y, Zhang L, Wei W, Guan X. 2014. Finite difference modeling of ultrasonic propagation (coda waves) in digital porous cores with un-split convolutional PML and rotated staggered grid. J Appl Geophys, 104: 75–89

    Article  Google Scholar 

  86. Zhu X, McMechan G A. 1991. Numerical simulation of seismic responses of poroelastic reservoirs using Biot theory. Geophysics, 56: 328–339

    Article  Google Scholar 

  87. Zimmerman R W, Somerton W H, King M S. 1986. Compressibility of porous rocks. J Geophys Res, 91: 12765–12777

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li-Yun Fu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Fu, B., Sun, W. et al. Elastic wave propagation and scattering in prestressed porous rocks. Sci. China Earth Sci. (2020). https://doi.org/10.1007/s11430-019-9615-3

Download citation

Keywords

  • Poro-acoustoelasticity with compliant pores
  • Elastic waves
  • Prestressed porous rocks
  • Numerical modeling
  • Stress-induced scattering attenuation