Skip to main content
Log in

Preliminary analysis of earthquake probability based on the synthetic seismic catalog

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The analysis of seismic hazards relies on the statistical analysis of historical seismic data and the instrumental seismic catalog to obtain the regional earthquake recurrence interval and earthquake probability. The accuracy of analysis thus depends strongly on the completeness of the seismic data used. However, available seismic catalogs are too short or incomplete for the reliable analysis of the statistical characteristics of earthquakes. If a long-term synthetic seismic catalog can be generated using a physics-based numerical simulation, and the simulation results match the crustal deformation, seismicity, and other observations, then such a synthetic catalog helps us to further understand the characteristics of seismic activity and analyze the regional seismic hazard. In this paper, taking the northeastern Tibetan Plateau as a case study, we establish a three-dimensional visco-elastoplastic finite-element model to simulate earthquake cycles and the spatiotemporal evolution of earthquakes on the model fault system and obtain a seismic catalog on a time scale of tens of thousands of years. On the basis that the model satisfies the regional geodynamics of the northeastern Tibetan Plateau, we analyze seismicity on the northeastern Tibetan Plateau using the simulated synthetic earthquake catalog. The characteristics of earthquake recurrence at different locations and different magnitudes, and the long-term average probability of earthquake occurrence within the fault system on the northeastern Tibetan plateau are studied. The results are a reference for regional seismic hazard assessment and provide a basis for the physics-based numerical prediction of earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Zion Y, Eneva M, Liu Y. 2003. Large earthquake cycles and intermittent criticality on heterogeneous faults due to evolving stress and seismicity. J Geophys Res, 108: ESE4–1

    Article  Google Scholar 

  • Burchfiel B C, Zhang P Z, Wang Y P, Zhang W Q, Song F M, Deng Q D, Molnar P, Royden L. 1991. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics, 10: 1091–1110

    Article  Google Scholar 

  • Burrideg R, Knopoff L. 1967. Model and theoretical seismicity. Bull Seismol Soc Amer, 57: 341–371

    Google Scholar 

  • Cavalié O, Lasserre C, Doin M P, Peltzer G, Sun J, Xu X, Shen Z K. 2008. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth Planet Sci Lett, 275: 246–257

    Article  Google Scholar 

  • Chen J. 2017. Seismic hazard modeling of the Sichuan-Yunnan region. Dissertation for Doctoral Degree. Beijing: Institute of Geology, China Earthquake Administration. 1–135

    Google Scholar 

  • Chen M X. 2007. Elasticity and Plasticity (in Chinese). Beijing: Science Press

    Google Scholar 

  • Chen Y T. 2009. Earthquake prediction: Retrospect and prospect (in Chinese). Sci China Ser D-Earth Sci, 1633–1658

    Google Scholar 

  • Cornell C A. 1968. Engineering seismic risk analysis. Bull Seismol Soc Amer, 58: 1583–1606

    Google Scholar 

  • Deng Q D, Liao Y H. 1996. Paleoseismology along the range-front fault of Helan Mountains, north central China. J Geophys Res, 101: 5873–5893

    Article  Google Scholar 

  • El-Isa Z H, Eaton D W. 2014. Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: Classification and causes. Tectonophysics, 615–616: 1–11

    Article  Google Scholar 

  • Field E H, Arrowsmith R J, Biasi G P, Bird P, Dawson T E, Felzer K R, Jackson D D, Johnson K M, Jordan T H, Madden C, Michael A J, Milner K R, Page M T, Parsons T, Powers P M, Shaw B E, Thatcher W R, Weldon R J, Zeng Y. 2014. Uniform California earthquake rupture forecast, Version 3 (UCERF3)—The time-independent model. Bull Seismol Soc Amer, 104: 1122–1180

    Article  Google Scholar 

  • Gan W J, Zhang P Z, Shen Z K, Niu Z J, Wang M, Wan Y G, Zhou D M, Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res, 112: B08416

    Article  Google Scholar 

  • Gao M T. 2015. GB18306-2015 “The Ground Motion Parameter Zoing Map of China” Promote and Implement the Teaching Material (in Chinese). Beijing: Standards Press of China

    Google Scholar 

  • Gaudemer Y, Tapponnier P, Meyer B, Peltzer G, Guo S M, Chen Z T, Dai H G, Cifuentes I. 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophys J Int, 120: 599–645

    Article  Google Scholar 

  • Geller R J. 1997. Earthquake prediction: A critical review. Geophys J Int, 131: 425–450

    Article  Google Scholar 

  • Geller R J, Jackson D D, Kagan Y Y, Mulargia F. 1997. Earthquakes cannot be predicted. Science, 275: 1616

    Article  Google Scholar 

  • Grant R A, Halliday T, Balderer W P, Leuenberger F, Newcomer M, Cyr G, Freund F T. 2011. Ground water chemistry changes before major earthquakes and possible effects on animals. Int J Environ Res Public Health, 8: 1936–1956

    Article  Google Scholar 

  • Gutenberg B, Richter C F. 1944. Frequency of earthquakes in California. Bull Seismol Soc Amer, 34: 185–188

    Google Scholar 

  • Hagiwara T, Rikitake T. 1967. Japanese Program on Earthquake Prediction: A prediction program now under way in Japan succeeds in longrange forecast of the Matsushiro earthquakes. Science, 157: 761–768

    Article  Google Scholar 

  • Hagiwara Y. 1974. Probability of earthquake occurrence as obtained from a Weibull distribution analysis of crustal strain. Tectonophysics, 23: 313–318

    Article  Google Scholar 

  • Hu Y X. 2001. GB18306-2001 “The Ground Motion Parameter Zoing Map of China” Promote and Implement the Teaching Material (in Chinese). Beijing: Standards Press of China

    Google Scholar 

  • Huang F Q, Zhang X D, Cao Z X, Li J P, Li S H. 2017. The roadmap of numerical earthquake prediction in China (in Chinese). Rec Dev World Seismol, (4): 3–10

    Google Scholar 

  • Institute of Geology, China Earthquake Administration and Ningxia Bureau of China Earthquake Administration. 1990. Active Haiyuan Fault Zone Monopraph, Special Publications on Active Fault Studies in China (in Chinese). Beijing: Seismological Press

    Google Scholar 

  • Jiang C S, Wu Z L. 2008. Retrospective forecasting test of a statistical physics model for earthquakes in Sichuan-Yunnan region. Sci China Ser D-Earth Sci, 51: 1401–1410

    Article  Google Scholar 

  • Jordan T H, Chen Y T, Gasparini P, Madariage R, Main I, Marzocchi W, Papadopoulos G. 2011. Operational earthquake forecasting-state of knowledge and guidelines for utilization. Ann Geophys, 54: 351–391

    Google Scholar 

  • Kagan Y Y. 2002. Seismic moment distribution revisited: I. Statistical results. Geophys J Int, 148: 520–541

    Article  Google Scholar 

  • Kagan Y Y, Jackson D D. 1991. Seismic gap hypothesis: Ten years after. J Geophys Res, 96: 21419–21431

    Article  Google Scholar 

  • Kanamori H, Anderson D L. 1975. Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Amer, 65: 1073–1095

    Google Scholar 

  • Kisslinger C. 1975. Processes during the Matsushiro, Japan, earthquake swarm as revealed by leveling, gravity, and spring-flow observations. Geology, 3: 57–62

    Article  Google Scholar 

  • Li Q S, Liu M, Zhang H. 2009. A 3-D viscoelastoplastic model for simulating long-term slip on non-planar faults. Geophys J Int, 176: 293–306

    Article  Google Scholar 

  • Lin A M, Hu J M, Gong W B. 2015. Active normal faulting and the seismogenic fault of the 1739 M≈8.0 Pingluo earthquake in the intracontinental Yinchuan Graben, China. J Asian Earth Sci, 114: 155–173

    Article  Google Scholar 

  • Liu B C, Yuan D Y, He W G, Liu X F. 1992. Risk analysis of strong earthquakes in west end of Haiyuan fault (in Chinese). Northwestern Seismol J, Suppl: 49–56

    Google Scholar 

  • Liu-Zeng J, Klinger Y, Xu X W, Lasserre C, Chen G, Chen W, Tapponnier P, Zhang B. 2007. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China. Bull Seismol Soc Amer, 97: 14–34

    Article  Google Scholar 

  • Luo G, Liu M. 2010. Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake. Tectonophysics, 491: 127–140

    Article  Google Scholar 

  • Luo G, Liu M. 2012. Multi-timescale mechanical coupling between the San Jacinto fault and the San Andreas fault, southern California. Lithosphere, 4: 221–229

    Article  Google Scholar 

  • Luo G, Liu M. 2018. Stressing rates and seismicity on the major faults in eastern Tibetan Plateau. J Geophys Res-Solid Earth, 123: 10968–10986

    Article  Google Scholar 

  • Ma Z J, Gao Q H, Chen J Y, Gao X L. 2007. Development of cause of disaster reduction and integrated reduction of disasters. J Nat Disaster, 16: 1–6

    Google Scholar 

  • Min W, Zhang P Z, Deng Q D. 2000. Primary study on regional paleoearthquake recurrence behavior (in Chinese). Acta Seismol Sin, 22: 163–170

    Google Scholar 

  • Montgomery D R, Manga M. 2003. Streamflow and water well responses to earthquakes. Science, 300: 2047–2049

    Article  Google Scholar 

  • Nuannin P, Kulhanek O, Persson L. 2005. Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophys Res Lett, 32: L11307

    Article  Google Scholar 

  • Pan H, Gao M T, Xie F R. 2013. The earthquake activity model and seismicity parameters in the new seismic hazard map of China (in Chinese). Technol Earthq Disaster Prevention, 8: 11–23

    Google Scholar 

  • Pang Y J, Cheng H H, Zhang H, Shi Y L. 2019. Numerical analysis of the influence of lithospheric structure on surface vertical movements in Eastern Tibet (in Chinese). Chin J Geophys, 62: 1256–1267

    Google Scholar 

  • Parsons T. 2007. Forecast experiment: Do temporal and spatial b value variations along the Calaveras fault portend M=4.0 earthquakes? J Geophys Res, 112: B03308

    Google Scholar 

  • Press F, Brace W F. 1966. Earthquake prediction. Science, 152: 1575–1584

    Article  Google Scholar 

  • Rabeh T, Miranda M, Hvozdara M. 2009. Strong earthquakes associated with high amplitude daily geomagnetic variations. Nat Hazards, 53: 561–574

    Article  Google Scholar 

  • Robinson R, Benites R. 1996. Synthetic seismicity models for the Wellington Region, New Zealand: Implications for the temporal distribution of large events. J Geophys Res, 101: 27833–27844

    Article  Google Scholar 

  • Rong Y, Jackson D D. 2002. Earthquake potential in and around China: Estimated from past earthquakes. Geophys Res Lett, 29: 27–1–27–4

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S. 2005. Earth science: Microseismicity data forecast rupture area. Nature, 434: 1086

    Article  Google Scholar 

  • Shi Y L, Sun Y Q, Luo G, Dong P Y, Zhang H. 2018. Roadmap for earthquake numerical forecasting in China—Reflection on the tenth anniversary of Wenchuan earthquake (in Chinese). Chin Sci Bull, 63: 1865–1881

    Article  Google Scholar 

  • Sun Y Q, Luo G. 2018. Spatial-temporal migraton of earthquakes in the northeastern Tibetan Plateau: Insights from a finite element model (in Chinese). Chin J Geophys, 61: 2246–2264

    Google Scholar 

  • Sun Y Q, Luo G, Yin L, Shi Y L. 2019. Migration probability of big earthquakes and segmentation of slip rates on the fault system in northeastern Tibetan Plateau (in Chinese). Chin J Geophys, 62: 1663–679

    Google Scholar 

  • Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. J Geophys Res, 82: 2905–2930

    Article  Google Scholar 

  • The Research Group on Active Fault System around Ordos Massif, SSB. 1988. Active Fault System Around Ordos Massif (in Chinese). Beijing: Seismological Press

    Google Scholar 

  • Turcotte D L, Schubert G. 1982. Geodynamics: Applications of Continuum Physics to Geological Problems. New York: John Wiley & Sons. 450

    Google Scholar 

  • Utsu T. 1984. Estimation of parameters for recurrence models of earthquakes. Bull Earthquake Res Inst, Univ Tokyo, 59: 53–66

    Google Scholar 

  • van Dinther Y, Gerya T V, Dalguer L A, Mai P M, Morra G, Giardini D. 2013. The seismic cycle at subduction thrusts: Insights from seismothermo-mechanical models. J Geophys Res-Solid Earth, 118: 6183–6202

    Article  Google Scholar 

  • Wang H Y, Gao R, Yin A, Xiong X S, Kuang C Y, Li W H, Huang W Y. 2012. Deep structure geometry features of Haiyuan fault and deformation of the crust revealed by deep seismic reflection profiling (in Chinese). Chin J Geophys, 55: 3902–3909

    Google Scholar 

  • Wang Y P, Song F M, Li Z Y, You H C, An P. 1990. Study on recurrence intervals of great earthquakes in the late Quaternary of Xiangshan-Tianjingshan fault zone in Ningxia (in Chinese). Earthquake Res Chin, 6: 15–24

    Google Scholar 

  • Ward S N. 1992. An application of synthetic seismicity in earthquake statistics: The Middle America Trench. J Geophys Res, 97: 6675–6682

    Article  Google Scholar 

  • Wen X Z. 1998. Assessment of time-dependent seismic hazards on segments of active fault, and its problems (in Chinese). Chin Sci Bull, 43: 1457–1466

    Article  Google Scholar 

  • Wesnousky S G. 1994. The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bull Seismol Soc Amer, 84: 1940–1959

    Google Scholar 

  • Wiemer S, Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Amer, 90: 859–869

    Article  Google Scholar 

  • Wolfram S. 1984. Cellular automata as models of complexity. Nature, 311: 419–424

    Article  Google Scholar 

  • Working Group on California Earthquake Probabilities. 1988. Probabilites of large earthquakes occurring in California on the San Andereas fault. U S Geol Surv, Open-File Report

    Google Scholar 

  • Wyss M. 2015. Testing the basic assumption for probabilistic seismichazard assessment: 11 failures. Seismol Res Lett, 86: 1405–1411

    Article  Google Scholar 

  • Xiao J, He J. 2015. 3D finite-element modeling of earthquake interaction and stress accumulation on main active faults around the northeastern Tibetan Plateau edge in the past ≈100 years. Bull Seismol Soc Amer, 105: 2724–2735

    Article  Google Scholar 

  • Yi G X, Wen X Z, Xu X W. 2002. Study on recurrence behaviors of strong earthquakes for several entireties of active fault zones in Sichuan- Yunnan region (in Chinese). Earthq Res Chin, 18: 267–276

    Google Scholar 

  • Yin L, Luo G, Sun Y Q. 2018. Middle-lower crust flow and crustal deformation: Insights from a finite element modeling (in Chinese). Chin J Geophys, 61: 3933–3950

    Google Scholar 

  • Zang S X, Qiang Wei R, Liu Y G. 2005. Three-dimensional rheological structure of the lithosphere in the Ordos block and its adjacent area. Geophys J Int, 163: 339–356

    Article  Google Scholar 

  • Zhang G M, Zhang X D, Wu R H, Jiang Z S, Liu J, Zhang Y X, Li G, Li M X. 2005. Retrospect of earthquake forecast and prospect (in Chinese). Rec Dev World Seismol, 5: 39–53

    Google Scholar 

  • Zhang P Z, Molnar P, Burchfiel B C, Royden L, Wang Y P, Deng Q D, Song F M, Zhang W Q, Jiao D C. 1988. Bounds on the Holocene slip rate of the Haiyuan fault, north-central China. Quat Res, 30: 151–164

    Article  Google Scholar 

  • Zhang P Z, Min W, Deng Q D, Mao F Y. 2005. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northeastern China. Sci China Ser D-Earth Sci, 48: 364–375

    Article  Google Scholar 

  • Zhang P Z, Deng Q D, Zhang Z Q, Li H B. 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China (in Chinese). Sci China Earth Sci, 43: 1607–1620

    Google Scholar 

  • Zhao Y L, Qian F Y. 1994. Geoelectric precursors to strong earthquakes in China. Tectonophysics, 233: 99–113

    Article  Google Scholar 

  • Zheng W J, Zhang P Z, He W G, Yuan D Y, Shao Y X, Zheng D W, Ge W P, Min W. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics, 584: 267–280

    Article  Google Scholar 

  • Zhou S Y. 2008. Seismicity simulation in western Sichuan of China based on the fault interactions and its implication on the estimation of the regional earthquake risk (in Chinese). Chin J Geophys, 51: 165–174

    Google Scholar 

  • Zhu A Y, Zhang D N, Jiang C S. 2016. Numerical simulation of the segmentation of the stress state of the Anninghe-Zemuhe-Xiaojiang faults. Sci China Earth Sci, 59: 384–396

    Article  Google Scholar 

  • Zhu S B, Zhang P Z. 2013. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan earthquake. Tectonophysics, 584: 64–80

    Article  Google Scholar 

  • Zilio L D, Van D Y, Gerya T V, Pranger C C. 2018. Seismic behaviour of mountain belts controlled by plate convergence rate. Earth Planet Sci Lett, 482: 81–92

    Article  Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers for the constructive suggestions. This work was supported by China Earthquake Science Experiment Project, CEA (Grant No. 2019CSES0112), and National Natural Science Foundation of China (Grant Nos. 41574085, 41974107, 41590865 & U1839207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Luo, G., Hu, C. et al. Preliminary analysis of earthquake probability based on the synthetic seismic catalog. Sci. China Earth Sci. 63, 985–998 (2020). https://doi.org/10.1007/s11430-019-9582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9582-9

Keywords

Navigation