Skip to main content
Log in

Increased winter-spring precipitation from the last glaciation to the Holocene inferred from a δ13Corg record from Yili Basin (Xinjiang, NW China)

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The nature and dynamics of climate change in central Asia since the late Pleistocene are controversial. Moreover, most of the published studies focus mainly on the evolution of moisture conditions, and there have been few attempts to address changes in seasonality. In this study, records of δ13Corg, TOC, TN, C/N and grain size were obtained from lacustrine sediments at Yili Basin, Xinjiang, NW China. Our aim was to reconstruct the trend in seasonality of precipitation from the last glaciation to the Holocene. The organic matter content of the sediments is derived predominantly from terrestrial plants. The δ13Corg values vary from -19.4% to -24.8%, indicating that the vegetation was dominated by C3 plants. Winter-spring precipitation is identified as the factor determining the relative proportions of C3 and C4 plants in the region. A negative trend in δ13Corg corresponding to an increase in the relative abundance of C3 plants indicate a trend of increasing winter-spring precipitation from the last glaciation to the Holocene. The increased incidence of wintertime storms in the interior of Asia is suggested to result in the increase of winterspring precipitation in the Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aizen V B, Aizen E M, Joswiak D R, Fujita K, Takeuchi N, Nikitin S A. 2006. Climatic and atmospheric circulation pattern variability from icecore isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol, 43: 49–60

    Article  Google Scholar 

  • Balesdent J, Girardin C, Mariotti A. 1993. Site-related δ13C of tree leaves and soil organic matter in a temperate forest. Ecology, 74: 1713–1721

    Article  Google Scholar 

  • Blaauw M, Christen J A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal, 6: 457–474

    Google Scholar 

  • Böhner J. 2006. General climatic controls and topoclimatic variations in central and high Asia. Boreas, 35: 279–295

    Article  Google Scholar 

  • Buchmann N, Kao W Y, Ehleringer J. 1997. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia, 110: 109–119

    Article  Google Scholar 

  • Cai Y J, Chiang J H, Breitenbach S M, Tan L C, Cheng H, Edwards R L, An Z S. 2017. Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quat Sci Rev, 158: 15–28

    Article  Google Scholar 

  • Chen F H, Jia J, Chen J H, Li G Q, Zhang X J, Xie H C, Xia D S, Huang W, An C B. 2016. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quat Sci Rev, 146: 134–146

    Article  Google Scholar 

  • Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen B D, Huang X Z, Zhao Y, Sato T, Birks J H, Boomer I, Chen J H, An C B, Wunnemann B. 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351–364

    Article  Google Scholar 

  • Chen T, Ma J, Feng H Y, He Y Q, Xu S J, Qiang W Y, An L Z. 2002. Environmental analysis of stable carbon isotope values in typical desert C3 plants of the Fukang, Xinjiang. Arid Land Geogr, 25: 342–345

    Google Scholar 

  • Cheng H, Zhang P Z, Spotl C, Edwards R L, Cai Y J, Zhang D Z, Sang W C, Tan M, An Z S. 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys Res Lett, 39: L01705

    Article  Google Scholar 

  • Deines P. 1980. The isotopic composition of reduced organic carbon. In: Fritz P, Fontes J C, eds. Handbook of Environmental Isotope Geochemistry I, The Terrestrial Environment. Amsterdam: Elsevier. 339–345

    Google Scholar 

  • Dormoy I, Peyron O, Nebout N C, Goring S, Kotthoff U, Magny M, Pross J. 2009. Terrestrial climate variability and seasonality changes in the Mediterranean region between 15000 and 4000 years BP deduced from marine pollen records. Clim Past, 5: 615–632

    Article  Google Scholar 

  • Fang X M, Lu L Q, Yang S L, Li J J, An Z S, Jiang P G, Chen X L. 2002. Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China. Sci China Ser D-Earth Sci, 45: 289

    Article  Google Scholar 

  • Farquhar G D, Ehleringer J R, Hubick K T. 1989. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 40: 503–537

    Article  Google Scholar 

  • Feng Y, Duan S M, Mu S Y, Zhao L, Zhao X H. 2012. Geographic distribution and ecology of C4 plants in Xinjiang. Arid Land Geogr, 35: 145–153

    Google Scholar 

  • Giresse P, Maley J, Brenac P. 1994. Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeogr Palaeoclimatol Palaeoecol, 107: 65–78

    Article  Google Scholar 

  • Gouveia S E M, Pessenda L C R, Aravena R, Boulet R, Scheel-Ybert R, Bendassoli J A, Ribeiro A S, Freitas H A. 2002. Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and the Holocene in the southeast and centerwest regions of Brazil. Glob Planet Change, 33: 95–106

    Article  Google Scholar 

  • Grootes P M, Stuiver M. 1997. Oxygen 18/16 variability in Greenland snow and ice with 103- to 105-year time resolution. J Geophys Res, 102: 26455–26470

    Article  Google Scholar 

  • Gu Z Y, Liu Q, Xu B, Han J M, Yang S L, Ding Z L, Liu D S. 2003. Climate as the dominant control on C3 and C4 plant abundance in the Loess Plateau: Organic carbon isotope evidence from the last glacial-interglacial loess-soil sequences. Chin Sci Bull, 48: 1271

    Article  Google Scholar 

  • Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163

    Article  Google Scholar 

  • Haug G H, Ganopolski A, Sigman D M, Rosell-Mele A, Swann G E A, Tiedemann R, Jaccard S L, Bollmann J, Maslin M A, Leng M J, Eglinton G. 2005. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433: 821–825

    Article  Google Scholar 

  • He S L, Lu G H, Yang X D, Wang Y S, Liu X X, Yang J. 2010. Study on the main families and genera of vegetation in Aibi Lake wetland nature reserve using δ13Corg. Xinjiang Agr Sci, 47: 1421–1426

    Google Scholar 

  • Hennissen J A I, Head M J, De Schepper S, Groeneveld J. 2015. Increased seasonality during the intensification of Northern Hemisphere glaciation at the Pliocene-Pleistocene boundary ~2.6 Ma. Quat Sci Rev, 129: 321–332

    Article  Google Scholar 

  • Herzschuh U. 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50000 years. Quat Sci Rev, 25: 163–178

    Article  Google Scholar 

  • Hewitt C D, Mitchell J F B. 1996. Gcm simulations of the climate of 6 kyr BP: Mean changes and interdecadal variability. J Clim, 9: 3505–3529

    Article  Google Scholar 

  • Hong B, Gasse F, Uchida M, Hong Y T, Leng X T, Shibata Y, An N, Zhu Y X, Wang Y. 2014. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years. Sci Rep, 4: 5279

    Article  Google Scholar 

  • Huang X Z, Chen F H, Fan Y X, Yang M L. 2009. Dry late-glacial and early Holocene climate in arid Central Asia indicated by lithological and palynological evidence from Bosten Lake, China. Quat Int, 194: 19–27

    Article  Google Scholar 

  • Huang Y S, Street-Perrott F A, Metcalfe S E, Brenner M, Moreland M, Freeman K H. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science, 293: 1647–1651

    Article  Google Scholar 

  • Kutzbach J E, Chen G, Cheng H, Edwards R L, Liu Z. 2013. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Clim Dyn, 42: 1079–1095

    Article  Google Scholar 

  • Lee X Q, Feng Z D, Guo L L, Wang L X, Jin L Y, Huang Y S, Chopping M, Huang D K, Jiang W, Jiang Q, Cheng H G. 2005. Carbon isotope of bulk organic matter: A proxy for precipitation in the arid and semiarid central East Asia. Glob Biogeochem Cycle, 19: GB4010

    Article  Google Scholar 

  • Li J F. 1991. Climate in Xinjiang. Beijing: China Meteorological Press. 74–124

  • Li X Q, Zhao K L, Dodson J, Zhou X Y. 2011. Moisture dynamics in central Asia for the last 15 kyr: New evidence from Yili Valley, Xinjiang, NW China. Quat Sci Rev, 30: 3457–3466

    Article  Google Scholar 

  • Liu W G, Huang Y S, An Z S, Clemens S C, Li L, Prell W L, Ning Y F. 2005a. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeogr Palaeoclimatol Palaeoecol, 220: 243–254

    Article  Google Scholar 

  • Liu W G, Ning Y F, An Z S, Wu Z H, Lu H Y, Cao Y N. 2005b. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau. Sci China Ser D-Earth Sci, 48: 93–99

    Article  Google Scholar 

  • Liu W G, Li X Z, An Z S, Xu L M, Zhang Q L. 2013. Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China. Chem Geol, 347: 153–160

    Article  Google Scholar 

  • Liu W G, Liu Z H, An Z S, Sun J M, Chang H, Wang N, Dong J B, Wang H Y. 2014. Late Miocene episodic lakes in the arid Tarim Basin, western China. Proc Natl Acad Sci USA, 111: 16292–16296

    Article  Google Scholar 

  • Liu X Q, Herzschuh U, Shen J, Jiang Q F, Xiao X Y. 2008. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res, 70: 412–425

    Article  Google Scholar 

  • Long H, Shen J, Chen J H, Tsukamoto S, Yang L H, Cheng H Y, Frechen M. 2017. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quat Sci Rev, 174: 13–32

    Article  Google Scholar 

  • Long H, Shen J, Tsukamoto S, Chen J H, Yang L H, Frechen M. 2014. Dry early Holocene revealed by sand dune accumulation chronology in Bayanbulak Basin (Xinjiang, NW China). Holocene, 24: 614–626

    Article  Google Scholar 

  • Lu H Y, Zhang H Y, Zeng L, Lu A Q, Zhang Z H, Chen Y Y, Yi S W. 2015. Temperature forced vegetation variations in glacial-interglacial cycles in northeastern China revealed by loess-laleosol deposit. Quat Sci, 35: 828–836

    Google Scholar 

  • Luo C, Liu W G, Peng Z C, Yang D, He J F, Liu G J, Zhang P X. 2008. Stable carbon isotope record of organic matter from the Lop-nurl acustrine sediment in Xinjiang, northweat China. Quat Sci, 28: 621–628

    Google Scholar 

  • Mackay A W, Bezrukova E V, Leng M J, Meaney M, Nunes A, Piotrowska N, Self A, Shchetnikov A, Shilland E, Tarasov P, Wang L, White D. 2012. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia. Quat Sci Rev, 41: 119–131

    Article  Google Scholar 

  • Mathis M, Sorrel P, Klotz S, Huang X T, Oberhansli H. 2014. Regional vegetation patterns at lake Son Kul reveal Holocene climatic variability in central Tien Shan (Kyrgyzstan, Central Asia). Quat Sci Rev, 89: 169–185

    Article  Google Scholar 

  • Meyers P A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org Geochem, 34: 261–289

    Article  Google Scholar 

  • Meyers P A, Horie S. 1993. An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeogr Palaeoclimatol Palaeoecol, 105: 171–178

    Article  Google Scholar 

  • Meyers P A, Ishiwatari R. 1993. Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 20: 867–900

    Article  Google Scholar 

  • Meyers P A, Lallier-Verges E. 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol, 21: 345–372

    Article  Google Scholar 

  • Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker T F, Raynaud D, Barnola J M. 2001. Atmospheric CO2 concentrations over the last glacial termination. Science, 291: 112–114

    Article  Google Scholar 

  • Nordt L C, Boutton T W, Jacob J S, Mandel R D. 2002. C4 plant productivity and climate-CO2 variations in South-Central Texas during the Late Quaternary. Quat Res, 58: 182–188

    Article  Google Scholar 

  • O’Leary M H. 1981. Carbon isotope fractionation in plants. Phytochemistry, 20: 553–567

    Article  Google Scholar 

  • O’Leary M H. 1988. Carbon isotope in photosynthesis. BioScience, 38: 328–336

    Article  Google Scholar 

  • Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorius C, PEpin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 399: 429–436

    Article  Google Scholar 

  • Peyron O, Goring S, Dormoy I, Kotthoff U, Pross J, de Beaulieu J L, Drescher-Schneider R, Vanniere B, Magny M. 2011. Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece). Holocene, 21: 131–146

    Article  Google Scholar 

  • Ran M, Feng Z D. 2014. Variation in carbon isotopic composition over the past ca. 46000 yr in the loess-paleosol sequence in central Kazakhstan and paleoclimatic significance. Org Geochem, 73: 47–55

    Article  Google Scholar 

  • Rao Z G, Xu Y B, Xia D S, Xie L H, Chen F H. 2013. Variation and paleoclimatic significance of organic carbon isotopes of Ili loess in arid Central Asia. Org Geochem, 63: 56–63

    Article  Google Scholar 

  • Rao Z G, Chen F H, Cheng H, Liu W G, Wang G A, Lai Z P, Blomental J. 2013. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Sci Rep, 3: 2785

    Article  Google Scholar 

  • Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13: 215-224

    Article  Google Scholar 

  • Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatte C, Heaton T J, Hoffmann D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0.50000 years cal BP. Radiocarbon, 55: 1869–1887

    Article  Google Scholar 

  • Rudaya N, Li H C. 2013. A new approach for reconstruction of the Holocene climate in the Mongolian Altai: The high-resolution δ13C records of TOC and pollen complexes in Hoton-Nur Lake sediments. J Asian Earth Sci, 69: 185–195

    Article  Google Scholar 

  • Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M. 2009. Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: A step towards better understanding climate dynamics in Central Asia. Quat Sci Rev, 28: 540–554

    Article  Google Scholar 

  • Sage R F, Wedin D A, Li M. 1999. The biogeography of C4 photosynthesis: Patterns and controlling factors. In: Sage R F, Monson R K, eds. C4 Plant Biology. San Diego: Academic Press. 313–373

    Chapter  Google Scholar 

  • Schubert B A, Jahren A H. 2012. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim Cosmochim Acta, 96: 29–43

    Article  Google Scholar 

  • Shen J, Wang S M, Zhang G. 1998a. Dissolvable organic composition and its paleoclimatte and enviromental significance in sediments of Gucheng Lake. J Lake Sci, 10: 63–70

    Article  Google Scholar 

  • Shen J, Wu R J, An Z S. 1998b. Characters of the organic δ13C and paleoenvironment in the section of Dubusu Lake. J Lake Sci, 10: 8–12

    Article  Google Scholar 

  • Song Y G, Shi Z T, Fang X M, Nie J S, Naoto I, Qiang X K, Wang X L. 2010. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau. Sci China Earth Sci, 53: 419–431

    Article  Google Scholar 

  • Stuiver M, Grootes P M, Braziunas T F. 1995. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat Res, 44: 341–354

    Article  Google Scholar 

  • Sun B Y, Yue L P, Lai Z P, Liu W G. 2014. Paleoclimate change recorded by sediment organic carbon isotope of Lake Barkol since 14 ka BP. Quat Sci, 34: 418–424

    Google Scholar 

  • Sun H L, Ma J Y, Wang S M, Zhang X. 2007. The study of stable carbon isotope composition in desert plants of Junggar Basin. J Desert Res, 27: 972–976

    Google Scholar 

  • Sun J M, Ye J, Wu W Y, Ni X J, Bi S D, Zhang Z Q, Liu W M, Meng J. 2010. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology, 38: 515–518

    Article  Google Scholar 

  • Sun X J, Du N Q, Weng C Y, Lin R F, Wei K Q. 1994. Paleovegetation and paleoenvironment of Manas Lake, Xinjiang, Northwestern China during the last 14000 years. Quat Sci, 3: 239–248

    Google Scholar 

  • Wang G A, Feng X, Han J M, Zhou L P, Tan W, Su F. 2008. Paleovegetation reconstruction using δ13C of Soil Organic Matter. Biogeosciences, 5: 1325–1337

    Article  Google Scholar 

  • Wang G A, Li J Z, Liu X Z, Li X Y. 2013. Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction. Quat Sci Rev, 63: 83–90

    Article  Google Scholar 

  • Wang G A, Zhang L L, Zhang X Y, Wang Y H, Xu Y P. 2014. Chemical and carbon isotopic dynamics of grass organic matter during litter decompositions: A litterbag experiment. Org Geochem, 69: 106–113

    Article  Google Scholar 

  • Wang Y, Zhu L P, Wang J B, Ju J T, Lin X. 2012. The spatial distribution and sedimentary processes of organic matter in surface sediments of Nam Co, Central Tibetan Plateau. Chin Sci Bull, 57: 4753–4764

    Article  Google Scholar 

  • Woszczyk M, Bechtel A, Gratzer R, Kotarba M J, Kokociński M, Fiebig J, Cieśliński R. 2011. Composition and origin of organic matter in surface sediments of Lake Sarbsko: A highly eutrophic and shallow coastal lake (northern Poland). Org Geochem, 42: 1025–1038

    Article  Google Scholar 

  • Wynn J G. 2007. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: Implications for paleoecological interpretations of paleosols. Palaeogeogr Palaeoclimatol Palaeoecol, 251: 437–448

    Article  Google Scholar 

  • Xinjiang Expedition Team, Chinese Academy of Sciences. 1978. Vegetation and its Utilization in Xinjiang. Beijing: Sciences Press. 1–266

    Google Scholar 

  • Yang S L, Ding Z L. 2006. Winter-spring precipitation as the principal control on predominance of C3 plants in Central Asia over the past 1.77 Myr: Evidence from δ13C of loess organic matter in Tajikistan. Palaeogeogr Palaeoclimatol Palaeoecol, 235: 330–339

    Article  Google Scholar 

  • Yang S L, Ding Z L, Li Y Y, Wang X, Jiang W Y, Huang X F. 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proc Natl Acad Sci USA, 112: 13178–13183

    Article  Google Scholar 

  • Yang X P, Zhu Z D, Jaekel D, Owen L A, Han J M. 2002. Late Quaternary palaeoenvironment change and landscape evolution along the Keriya River, Xinjiang, China: The relationship between high mountain glaciation and landscape evolution in foreland desert regions. Quat Int, 97-98: 155–166

    Article  Google Scholar 

  • Ye W. 1999. Characteristics of physical environment and conditions of loess formation in Yili area, Xijing. Arid Land Geogr, 22: 9–16

    Google Scholar 

  • Zhang Y, Meyers P A, Liu X T, Wang G P, Ma X H, Li X Y, Yuan Y X, Wen B L. 2016. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China. Quat Sci Rev, 152: 19–30

    Article  Google Scholar 

  • Zhao K L, Li X Q, Dodson J, Zhou X Y, Atahanc P. 2013. Climate instability during the last deglaciation in central Asia, reconstructed by pollen data from Yili Valley, NW China. Rev Palaeobot Palynol, 189: 8–17

    Article  Google Scholar 

  • Zhao Y, Liu Y L, Guo Z T, Fang K Y, Li Q, Cao X Y. 2017. Abrupt vegetation shifts caused by gradual climate changes in central Asia during the Holocene. Sci China Earth Sci, 60: 1317–1327

    Article  Google Scholar 

  • Zheng H B, Wei X C, Tada R, Clift P D, Wang B, Jourdan F, Wang P, He M Y. 2015. Late Oligocene-early Miocene birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 112: 7662–7667

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Guilin Zhang for helpful discussions about the age model. This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000), the National Natural Science Foundation of China (Grant Nos. 41772371, 41572161 & 41730319), the National Basic Research Program of China (Grant No. 2015CB953803), the Youth Innovation Promotion Association CAS, and the Australian Nuclear Science and Technology Organization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keliang Zhao or Xiaoqiang Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Li, X., Xu, H. et al. Increased winter-spring precipitation from the last glaciation to the Holocene inferred from a δ13Corg record from Yili Basin (Xinjiang, NW China). Sci. China Earth Sci. 62, 1125–1137 (2019). https://doi.org/10.1007/s11430-018-9333-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9333-x

Keywords

Navigation