Science China Earth Sciences

, Volume 62, Issue 5, pp 843–852 | Cite as

Multiscale analysis of Asian Monsoon over the past 640 ka

  • Yalan Zeng
  • Shitao ChenEmail author
  • Shaohua Yang
  • Yijia Liang
  • Yongjin Wang
Research Paper


The empirical mode decomposition (EMD) method is used to re-analyse the high-resolution and precisely-dated stalagmite record from Chinese caves over the past 640 ka. Results show that (1) the variation in the Asian Monsoon can be completely decomposed into ten quasiperiod oscillations, among which the precession and semiprecession band oscillations are the most prominent periodicities, with contribution rates of 31.1% and 30.7%, respectively; (2) the cross-spectrum analysis of the semiprecession component and bi-hemisphere insolation (BHI) are strongly correlated, indicating an amplified response of precipitation and temperature variability to the interhemispheric insolation in the low-latitude regions, thus further affecting the intensity of the Asian Monsoon; (3) on millennial timescales, obvious oscillations at the 5 ka and 1–2 ka bands roughly correspond to the classical Bond and Dansgaard-Oeschger (DO) cycles. Additionally, a strong correlation is found between the detrended stalagmite δ18O records and Ca/Sr sequence from the North Atlantic (especially at the 5 ka band). This result means that the 5 ka cycle is characteristic of the glacial-interglacial cycle since the middle and late Pleistocene and may imply that climate change on the millennial timescale is the result of an interaction between global ice volume and insolation.


Empirical mode decomposition (EMD) Asian Monsoon Oxygen isotope records Semiprecession 5 ka cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the anonymous reviewers for their constructive comments which significant improved the manuscript. This work was supported by National Natural Science Foundation of China (Grant No. 41572340), and Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. 164320H116).


  1. An Z, Clemens S C, Shen J, Qiang X, Jin Z, Sun Y, Prell W L, Luo J, Wang S, Xu H, Cai Y, Zhou W, Liu X, Liu W, Shi Z, Yan L, Xiao X, Chang H, Wu F, Ai L, Lu F. 2011. Glacial-interglacial Indian Summer Monsoon dynamics. Science, 333: 719–723CrossRefGoogle Scholar
  2. An Z, Wu G, Li J, Sun Y, Liu Y, Zhou W, Cai Y, Duan A, Li L, Mao J, Cheng H, Shi Z, Tan L, Yan H, Ao H, Chang H, Feng J. 2015. Global monsoon dynamics and climate change. J Earth Env, 43: 29–63Google Scholar
  3. Berger A L. 1978. Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quat Res, 9: 139–167CrossRefGoogle Scholar
  4. Berger A, Loutre M F, Mélice J L. 2006. Equatorial insolation: From precession harmonics to eccentricity frequencies. Clim Past, 2: 131–136CrossRefGoogle Scholar
  5. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, Demenocal P, Priore P, Cullen H, Hajdas I, Bonani G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278: 1257–1266CrossRefGoogle Scholar
  6. Cao J, Wen Z P, Chang Y L, Li X R. 2012. Wavelet analysis of the convectively-coupled equatorial waves. Sci China Earth Sci, 55: 675–684CrossRefGoogle Scholar
  7. Channell J E T, Hodell D A, Romero O, Hillaire-Marcel C, de Vernal A, Stoner J S, Mazaud A, Röhl U. 2012. A 750-kyr detrital-layer stratigraphy for the North Atlantic (IODP sites U1302–U1303, Orphan Knoll, Labrador Sea). Earth Planet Sci Lett, 317-318: 218–230CrossRefGoogle Scholar
  8. Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X, Wang Y, Zhang R, Wang X. 2009. Ice age terminations. Science, 326: 248–252CrossRefGoogle Scholar
  9. Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H. 2016. The Asian Monsoon over the past 640000 years and ice age terminations. Nature, 534: 640–646CrossRefGoogle Scholar
  10. Chiang J C H, Friedman A R. 2012. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu Rev Earth Planet Sci, 40: 383–412CrossRefGoogle Scholar
  11. Cooper M C, O'Sullivan P E, Shine A J. 2000. Climate and solar variability recorded in Holocene laminated sediments—A preliminary assessment. Quat Int, 68-71: 363–371CrossRefGoogle Scholar
  12. Delmotte M, Chappellaz J, Brook E, Yiou P, Barnola J M, Goujon C, Raynaud D, Lipenkov V I. 2004. Atmospheric methane during the last four glacial-interglacial cycles: Rapid changes and their link with Antarctic temperature. J Geophys Res, 109: 1–13CrossRefGoogle Scholar
  13. Diaz H F, Bradley R S. 2004. The Hadley Circulation: Present, Past and Future. Dordrecht: Springer. 21: 1–5Google Scholar
  14. Ding Z L, Derbyshire E, Yang S L, Yu Z W, Xiong S F, Liu T S. 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography, 17: 5–1–5–21CrossRefGoogle Scholar
  15. Dykoski C A, Edwards R L, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian Monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233: 71–86CrossRefGoogle Scholar
  16. Emanuele D, Ferretti P, Palumbo E, Amore F O. 2015. Sea-surface dynamics and palaeoenvironmental changes in the North Atlantic Ocean (IODP site U1313) during marine isotope stage 19 inferred from coccolithophore assemblages. Palaeogeogr Palaeoclimatol Palaeoecol, 430: 104–117CrossRefGoogle Scholar
  17. Ferretti P, Crowhurst S J, Hall M A, Cacho I. 2010. North Atlantic millennial-scale climate variability 910 to 790 ka and the role of the equatorial insolation forcing. Earth Planet Sci Lett, 293: 28–41CrossRefGoogle Scholar
  18. Ferretti P, Crowhurst S J, Naafs B D A, Barbante C. 2015. The marine isotope stage 19 in the mid-latitude North Atlantic Ocean: Astronomical signature and intra-interglacial variability. Quat Sci Rev, 108: 95–110CrossRefGoogle Scholar
  19. Forbes J M, Hagan M E, Miyahara S, Vial F, Manson A H, Meek C E, Portnyagin Y I. 1995. Quasi 16-day oscillation in the mesosphere and lower thermosphere. J Geophys Res, 100: 9149–9163CrossRefGoogle Scholar
  20. Fox B R S, D’Andrea W J, Wilson G S, Lee D E, Wartho J A. 2017. Interaction of polar and tropical influences in the mid-latitudes of the southern hemisphere during the Mi-1 deglaciation. Glob Planet Change, 155: 109–120CrossRefGoogle Scholar
  21. Ganopolski A, Roche D M. 2009. On the nature of lead-lag relationships during glacial-interglacial climate transitions. Quat Sci Rev, 28: 3361–3378CrossRefGoogle Scholar
  22. Goñi M F S, Rodrigues T, Hodell D A, Polanco-Martínez J M, Alonso-García M, Hernández-Almeida I, Desprat S, Ferretti P. 2016. Tropically-driven climate shifts in Southwestern Europe during MIS 19, a low eccentricity interglacial. Earth Planet Sci Lett, 448: 81–93CrossRefGoogle Scholar
  23. Grimm E C, Jacobson Jr. G L, Watts W A, Hansen B C S, Maasch K A. 1993. A 50000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science, 261: 198–200CrossRefGoogle Scholar
  24. Guo Z, Zhou X, Wu H. 2012. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes. Clim Dyn, 39: 1073–1092CrossRefGoogle Scholar
  25. Hagelberg T K, Bond G, Demenocal P. 1994. Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene. Paleoceanography, 9: 545–558CrossRefGoogle Scholar
  26. Hays J D, Imbrie J, Shackleton N J. 1976. Variations in the Earth’s orbit: Pacemaker of the Ice Ages. Science, 194: 1121–1132CrossRefGoogle Scholar
  27. Hodell D, Crowhurst S, Skinner L, Tzedakis P C, Margari V, Channell J E T, Kamenov G, Maclachlan S, Rothwell G. 2013. Response of Iberian margin sediments to orbital and suborbital forcing over the past 420 ka. Paleoceanography, 28: 185–199CrossRefGoogle Scholar
  28. Hopley P J, Weedon G P, Marshall J D, Herries A I R, Latham A G, Kuykendall K L. 2007. High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth Planet Sci Lett, 256: 419–432CrossRefGoogle Scholar
  29. Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A-Math Phys Eng Sci, 454: 903–995CrossRefGoogle Scholar
  30. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. 2007. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 317: 793–796CrossRefGoogle Scholar
  31. Kashiwaya K, Ochiai S, Sakai H, Kawai T. 2003. Onset of current Milankovitchtype climatic oscillations in Lake Baikal sediments at around 4 Ma. Earth Planet Sci Lett, 213: 185–190CrossRefGoogle Scholar
  32. Kirsten K L, Haberzettl T, Wündsch M, Frenzel P, Meschner S, Smit A J, Quick L J, Mäusbacher R, Meadows M E. 2018. A multiproxy study of the ocean-atmospheric forcing and the impact of sea-level changes on the Southern Cape Coast, South Africa during the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol, 496: 282–291CrossRefGoogle Scholar
  33. Li Y, Su N, Liang L, Ma L, Yan Y, Sun Y. 2015. Multiscale monsoon variability during the last two climatic cycles revealed by spectral signals in Chinese loess and speleothem records. Clim Past, 11: 1067–1075CrossRefGoogle Scholar
  34. Lin Z S, Sun X. 2007. Multi-scale analysis of global temperature changes and trend of a drop in temperature in the next 20 years. Meteorol Atmos Phys, 95: 115–121CrossRefGoogle Scholar
  35. Lin Z S, Wang S G. 2006. EMD analysis of solar insolation. Meteorol Atmos Phys, 93: 123–128CrossRefGoogle Scholar
  36. Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: 1–17Google Scholar
  37. Liu H Y, Lin Z S, Qi X Z, Li Y X, Yu M T, Yang H, Shen J. 2012. Possible link between Holocene East Asian Monsoon and solar activity obtained from the EMD method. Nonlin Processes Geophys, 19: 421–430CrossRefGoogle Scholar
  38. Liu H, Lin Z, Qi X, Zhang M, Zhang Z, Du J. 2010. Multiple analysis of variation of the East Asian Monsoon during the Holocene. Quat Int, 213: 74–78CrossRefGoogle Scholar
  39. Liu Z F, Zhao Y L, Li J R, Colin C. 2007. Late quaternary clay minerals off middle Vietnam in the western South China Sea: Implications for source analysis and East Asian Monsoon evolution. Sci China Ser D-Earth Sci, 50: 1674–1684CrossRefGoogle Scholar
  40. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J M, Raynaud D, Stocker T F, Chappellaz J. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800000 years. Nature, 453: 383–386CrossRefGoogle Scholar
  41. Luo Y, Sun X, Jian Z. 2005. Environmental change during the penultimate glacial cycle: A high-resolution pollen record from ODP site 1144, South China Sea. Mar Micropaleontol, 54: 107–123CrossRefGoogle Scholar
  42. McDermott F, Mattey D P, Hawkesworth C. 2001. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science, 294: 1328–1331CrossRefGoogle Scholar
  43. Mcintyre M E. 1989. On dynamics and transport near the polar mesopause in summer. J Geophys Res, 94: 14617–14628CrossRefGoogle Scholar
  44. McManus J F, Oppo D W, Cullen J L. 1999. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 283: 971–975CrossRefGoogle Scholar
  45. Parrenin F, Barnola J M, Beer J, Blunier T, Castellano E, Chappellaz J, Dreyfus G, Fischer H, Fujita S, Jouzel J, Kawamura K, Lemieux-Dudon B, Loulergue L, Masson-Delmotte V, Narcisi B, Petit J R, Raisbeck G, Raynaud D, Ruth U, Schwander J, Severi M, Spahni R, Steffensen J P, Svensson A, Udisti R, Waelbroeck C, Wolff E. 2007. The EDC3 chronology for the EPICA Dome C ice core. Clim Past, 3: 485–497CrossRefGoogle Scholar
  46. Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorius C, PÉpin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 399: 429–436CrossRefGoogle Scholar
  47. Porter S C, An Z. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375: 305–308CrossRefGoogle Scholar
  48. Rousse S, Kissel C, Laj C, Eiriksson J, Knudsen K. 2006. Holocene centennial to millennial-scale climatic variability: Evidence from high-resolution magnetic analyses of the last 10 cal kyr off North Iceland (core MD99-2275). Earth Planet Sci Lett, 242: 390–405CrossRefGoogle Scholar
  49. Rutherford S, D’Hondt S. 2000. Early onset and tropical forcing of 100000-year Pleistocene glacial cycles. Nature, 408: 72–75CrossRefGoogle Scholar
  50. Schulz H, von Rad, U, Erlenkeuser, H, von Rad, U. 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110000 years. Nature, 393: 54–57CrossRefGoogle Scholar
  51. Shackleton N J. 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289: 1897–1902CrossRefGoogle Scholar
  52. Short D A, Mengel J G, Crowley T J, Hyde W T, North G R. 1991. Filtering of Milankovitch cycles by Earth’s geography. Quat Res, 35: 157–173CrossRefGoogle Scholar
  53. Siddall M, Rohling E J, Blunier T, Spahni R. 2010. Patterns of millennial variability over the last 500 ka. Clim Past, 6: 295–303CrossRefGoogle Scholar
  54. Solé J, Turiel A, Llebot J E. 2007. Using empirical mode decomposition to correlate paleoclimatc time series. Nat Hazard Earth Sys, 7: 299–307CrossRefGoogle Scholar
  55. Sun X, Luo Y, Huang F, Tian J, Wang P. 2003. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian Monsoon. Mar Geol, 201: 97–118CrossRefGoogle Scholar
  56. Sun Y, Clemens S C, Morrill C, Lin X, Wang X, An Z. 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci, 5: 46–49CrossRefGoogle Scholar
  57. Torrence C, Compo G P. 1998. A practical guide to wavelet analysis. Bull Amer Meteorol Soc, 79: 61–78CrossRefGoogle Scholar
  58. Tuenter E, Weber S L, Hilgen F J, Lourens L J. 2007. Simulating sub-Milankovitch climate variations associated with vegetation dynamics. Clim Past, 3: 169–180CrossRefGoogle Scholar
  59. Verschuren D, Sinninghe Damsté J S, Moernaut J, Kristen I, Blaauw M, Fagot M, Haug G H, Haug G H. 2009. Half-precessional dynamics of monsoon rainfall near the east African equator. Nature, 462: 637–641CrossRefGoogle Scholar
  60. Vleeschouwer D, da Silva A C, Boulvain F, Crucifix M, Claeys P. 2012. Precessional and half-precessional climate forcing of mid-Devonian monsoon-like dynamics. Clim Past, 8: 337–351CrossRefGoogle Scholar
  61. Wang X, Auler A S, Edwards R L, Cheng H, Ito E, Wang Y, Kong X, Solheid M. 2007. Millennial-scale precipitation changes in southern Brazil over the past 90000 years. Geophys Res Lett, 34: 135–147Google Scholar
  62. Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345–2348CrossRefGoogle Scholar
  63. Wang Y, Cheng H, Edwards R L, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224000 years. Nature, 451: 1090–1093CrossRefGoogle Scholar
  64. Wei G J, Huang C Y, Wang C C, Lee M Y, Wei K Y. 2006. High-resolution benthic foraminifer δ13C records in the South China Sea during the last 150 ka. Mar Geol, 232: 227–235CrossRefGoogle Scholar
  65. Weirauch D, Billups K, Martin P. 2008. Evolution of millennial-scale climate variability during the mid-Pleistocene. Paleoceanography, 23: PA3216–16CrossRefGoogle Scholar
  66. Yu Z, Ding Z. 2003. Nonlinear coupling between 100 ka periodicity of the paleoclimate records in loess and periodicities of precession and semiprecession. Sci China Ser D-Earth Sci, 46: 1077–1087CrossRefGoogle Scholar
  67. Yuan D, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale J A, An Z, Cai Y. 2004. Timing, duration, and transitions of the last interglacial Asian Monsoon. Science, 304: 575–578CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yalan Zeng
    • 1
    • 2
    • 3
  • Shitao Chen
    • 1
    • 2
    • 3
    Email author
  • Shaohua Yang
    • 1
    • 2
    • 3
  • Yijia Liang
    • 1
    • 2
    • 3
  • Yongjin Wang
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Virtual Geographic Environment, Ministry of Education, School of Geography ScienceNanjing Normal UniversityNanjingChina
  2. 2.State Key Laboratory of Cultivation Base of Geographical Environment Evolution (Jiangsu Province)NanjingChina
  3. 3.Jiangsu Center for Collaborative Innovation in Geographical Environment Resource Development and ApplicationNanjingChina

Personalised recommendations