Skip to main content
Log in

Multiscale analysis of Asian Monsoon over the past 640 ka

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The empirical mode decomposition (EMD) method is used to re-analyse the high-resolution and precisely-dated stalagmite record from Chinese caves over the past 640 ka. Results show that (1) the variation in the Asian Monsoon can be completely decomposed into ten quasiperiod oscillations, among which the precession and semiprecession band oscillations are the most prominent periodicities, with contribution rates of 31.1% and 30.7%, respectively; (2) the cross-spectrum analysis of the semiprecession component and bi-hemisphere insolation (BHI) are strongly correlated, indicating an amplified response of precipitation and temperature variability to the interhemispheric insolation in the low-latitude regions, thus further affecting the intensity of the Asian Monsoon; (3) on millennial timescales, obvious oscillations at the 5 ka and 1–2 ka bands roughly correspond to the classical Bond and Dansgaard-Oeschger (DO) cycles. Additionally, a strong correlation is found between the detrended stalagmite δ18O records and Ca/Sr sequence from the North Atlantic (especially at the 5 ka band). This result means that the 5 ka cycle is characteristic of the glacial-interglacial cycle since the middle and late Pleistocene and may imply that climate change on the millennial timescale is the result of an interaction between global ice volume and insolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • An Z, Clemens S C, Shen J, Qiang X, Jin Z, Sun Y, Prell W L, Luo J, Wang S, Xu H, Cai Y, Zhou W, Liu X, Liu W, Shi Z, Yan L, Xiao X, Chang H, Wu F, Ai L, Lu F. 2011. Glacial-interglacial Indian Summer Monsoon dynamics. Science, 333: 719–723

    Article  Google Scholar 

  • An Z, Wu G, Li J, Sun Y, Liu Y, Zhou W, Cai Y, Duan A, Li L, Mao J, Cheng H, Shi Z, Tan L, Yan H, Ao H, Chang H, Feng J. 2015. Global monsoon dynamics and climate change. J Earth Env, 43: 29–63

    Google Scholar 

  • Berger A L. 1978. Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quat Res, 9: 139–167

    Article  Google Scholar 

  • Berger A, Loutre M F, Mélice J L. 2006. Equatorial insolation: From precession harmonics to eccentricity frequencies. Clim Past, 2: 131–136

    Article  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, Demenocal P, Priore P, Cullen H, Hajdas I, Bonani G. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278: 1257–1266

    Article  Google Scholar 

  • Cao J, Wen Z P, Chang Y L, Li X R. 2012. Wavelet analysis of the convectively-coupled equatorial waves. Sci China Earth Sci, 55: 675–684

    Article  Google Scholar 

  • Channell J E T, Hodell D A, Romero O, Hillaire-Marcel C, de Vernal A, Stoner J S, Mazaud A, Röhl U. 2012. A 750-kyr detrital-layer stratigraphy for the North Atlantic (IODP sites U1302–U1303, Orphan Knoll, Labrador Sea). Earth Planet Sci Lett, 317-318: 218–230

    Article  Google Scholar 

  • Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X, Wang Y, Zhang R, Wang X. 2009. Ice age terminations. Science, 326: 248–252

    Article  Google Scholar 

  • Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H. 2016. The Asian Monsoon over the past 640000 years and ice age terminations. Nature, 534: 640–646

    Article  Google Scholar 

  • Chiang J C H, Friedman A R. 2012. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu Rev Earth Planet Sci, 40: 383–412

    Article  Google Scholar 

  • Cooper M C, O'Sullivan P E, Shine A J. 2000. Climate and solar variability recorded in Holocene laminated sediments—A preliminary assessment. Quat Int, 68-71: 363–371

    Article  Google Scholar 

  • Delmotte M, Chappellaz J, Brook E, Yiou P, Barnola J M, Goujon C, Raynaud D, Lipenkov V I. 2004. Atmospheric methane during the last four glacial-interglacial cycles: Rapid changes and their link with Antarctic temperature. J Geophys Res, 109: 1–13

    Article  Google Scholar 

  • Diaz H F, Bradley R S. 2004. The Hadley Circulation: Present, Past and Future. Dordrecht: Springer. 21: 1–5

    Google Scholar 

  • Ding Z L, Derbyshire E, Yang S L, Yu Z W, Xiong S F, Liu T S. 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography, 17: 5–1–5–21

    Article  Google Scholar 

  • Dykoski C A, Edwards R L, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian Monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233: 71–86

    Article  Google Scholar 

  • Emanuele D, Ferretti P, Palumbo E, Amore F O. 2015. Sea-surface dynamics and palaeoenvironmental changes in the North Atlantic Ocean (IODP site U1313) during marine isotope stage 19 inferred from coccolithophore assemblages. Palaeogeogr Palaeoclimatol Palaeoecol, 430: 104–117

    Article  Google Scholar 

  • Ferretti P, Crowhurst S J, Hall M A, Cacho I. 2010. North Atlantic millennial-scale climate variability 910 to 790 ka and the role of the equatorial insolation forcing. Earth Planet Sci Lett, 293: 28–41

    Article  Google Scholar 

  • Ferretti P, Crowhurst S J, Naafs B D A, Barbante C. 2015. The marine isotope stage 19 in the mid-latitude North Atlantic Ocean: Astronomical signature and intra-interglacial variability. Quat Sci Rev, 108: 95–110

    Article  Google Scholar 

  • Forbes J M, Hagan M E, Miyahara S, Vial F, Manson A H, Meek C E, Portnyagin Y I. 1995. Quasi 16-day oscillation in the mesosphere and lower thermosphere. J Geophys Res, 100: 9149–9163

    Article  Google Scholar 

  • Fox B R S, D’Andrea W J, Wilson G S, Lee D E, Wartho J A. 2017. Interaction of polar and tropical influences in the mid-latitudes of the southern hemisphere during the Mi-1 deglaciation. Glob Planet Change, 155: 109–120

    Article  Google Scholar 

  • Ganopolski A, Roche D M. 2009. On the nature of lead-lag relationships during glacial-interglacial climate transitions. Quat Sci Rev, 28: 3361–3378

    Article  Google Scholar 

  • Goñi M F S, Rodrigues T, Hodell D A, Polanco-Martínez J M, Alonso-García M, Hernández-Almeida I, Desprat S, Ferretti P. 2016. Tropically-driven climate shifts in Southwestern Europe during MIS 19, a low eccentricity interglacial. Earth Planet Sci Lett, 448: 81–93

    Article  Google Scholar 

  • Grimm E C, Jacobson Jr. G L, Watts W A, Hansen B C S, Maasch K A. 1993. A 50000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science, 261: 198–200

    Article  Google Scholar 

  • Guo Z, Zhou X, Wu H. 2012. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes. Clim Dyn, 39: 1073–1092

    Article  Google Scholar 

  • Hagelberg T K, Bond G, Demenocal P. 1994. Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene. Paleoceanography, 9: 545–558

    Article  Google Scholar 

  • Hays J D, Imbrie J, Shackleton N J. 1976. Variations in the Earth’s orbit: Pacemaker of the Ice Ages. Science, 194: 1121–1132

    Article  Google Scholar 

  • Hodell D, Crowhurst S, Skinner L, Tzedakis P C, Margari V, Channell J E T, Kamenov G, Maclachlan S, Rothwell G. 2013. Response of Iberian margin sediments to orbital and suborbital forcing over the past 420 ka. Paleoceanography, 28: 185–199

    Article  Google Scholar 

  • Hopley P J, Weedon G P, Marshall J D, Herries A I R, Latham A G, Kuykendall K L. 2007. High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth Planet Sci Lett, 256: 419–432

    Article  Google Scholar 

  • Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A-Math Phys Eng Sci, 454: 903–995

    Article  Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. 2007. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 317: 793–796

    Article  Google Scholar 

  • Kashiwaya K, Ochiai S, Sakai H, Kawai T. 2003. Onset of current Milankovitchtype climatic oscillations in Lake Baikal sediments at around 4 Ma. Earth Planet Sci Lett, 213: 185–190

    Article  Google Scholar 

  • Kirsten K L, Haberzettl T, Wündsch M, Frenzel P, Meschner S, Smit A J, Quick L J, Mäusbacher R, Meadows M E. 2018. A multiproxy study of the ocean-atmospheric forcing and the impact of sea-level changes on the Southern Cape Coast, South Africa during the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol, 496: 282–291

    Article  Google Scholar 

  • Li Y, Su N, Liang L, Ma L, Yan Y, Sun Y. 2015. Multiscale monsoon variability during the last two climatic cycles revealed by spectral signals in Chinese loess and speleothem records. Clim Past, 11: 1067–1075

    Article  Google Scholar 

  • Lin Z S, Sun X. 2007. Multi-scale analysis of global temperature changes and trend of a drop in temperature in the next 20 years. Meteorol Atmos Phys, 95: 115–121

    Article  Google Scholar 

  • Lin Z S, Wang S G. 2006. EMD analysis of solar insolation. Meteorol Atmos Phys, 93: 123–128

    Article  Google Scholar 

  • Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: 1–17

    Google Scholar 

  • Liu H Y, Lin Z S, Qi X Z, Li Y X, Yu M T, Yang H, Shen J. 2012. Possible link between Holocene East Asian Monsoon and solar activity obtained from the EMD method. Nonlin Processes Geophys, 19: 421–430

    Article  Google Scholar 

  • Liu H, Lin Z, Qi X, Zhang M, Zhang Z, Du J. 2010. Multiple analysis of variation of the East Asian Monsoon during the Holocene. Quat Int, 213: 74–78

    Article  Google Scholar 

  • Liu Z F, Zhao Y L, Li J R, Colin C. 2007. Late quaternary clay minerals off middle Vietnam in the western South China Sea: Implications for source analysis and East Asian Monsoon evolution. Sci China Ser D-Earth Sci, 50: 1674–1684

    Article  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J M, Raynaud D, Stocker T F, Chappellaz J. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800000 years. Nature, 453: 383–386

    Article  Google Scholar 

  • Luo Y, Sun X, Jian Z. 2005. Environmental change during the penultimate glacial cycle: A high-resolution pollen record from ODP site 1144, South China Sea. Mar Micropaleontol, 54: 107–123

    Article  Google Scholar 

  • McDermott F, Mattey D P, Hawkesworth C. 2001. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science, 294: 1328–1331

    Article  Google Scholar 

  • Mcintyre M E. 1989. On dynamics and transport near the polar mesopause in summer. J Geophys Res, 94: 14617–14628

    Article  Google Scholar 

  • McManus J F, Oppo D W, Cullen J L. 1999. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science, 283: 971–975

    Article  Google Scholar 

  • Parrenin F, Barnola J M, Beer J, Blunier T, Castellano E, Chappellaz J, Dreyfus G, Fischer H, Fujita S, Jouzel J, Kawamura K, Lemieux-Dudon B, Loulergue L, Masson-Delmotte V, Narcisi B, Petit J R, Raisbeck G, Raynaud D, Ruth U, Schwander J, Severi M, Spahni R, Steffensen J P, Svensson A, Udisti R, Waelbroeck C, Wolff E. 2007. The EDC3 chronology for the EPICA Dome C ice core. Clim Past, 3: 485–497

    Article  Google Scholar 

  • Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorius C, PÉpin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 399: 429–436

    Article  Google Scholar 

  • Porter S C, An Z. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375: 305–308

    Article  Google Scholar 

  • Rousse S, Kissel C, Laj C, Eiriksson J, Knudsen K. 2006. Holocene centennial to millennial-scale climatic variability: Evidence from high-resolution magnetic analyses of the last 10 cal kyr off North Iceland (core MD99-2275). Earth Planet Sci Lett, 242: 390–405

    Article  Google Scholar 

  • Rutherford S, D’Hondt S. 2000. Early onset and tropical forcing of 100000-year Pleistocene glacial cycles. Nature, 408: 72–75

    Article  Google Scholar 

  • Schulz H, von Rad, U, Erlenkeuser, H, von Rad, U. 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110000 years. Nature, 393: 54–57

    Article  Google Scholar 

  • Shackleton N J. 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289: 1897–1902

    Article  Google Scholar 

  • Short D A, Mengel J G, Crowley T J, Hyde W T, North G R. 1991. Filtering of Milankovitch cycles by Earth’s geography. Quat Res, 35: 157–173

    Article  Google Scholar 

  • Siddall M, Rohling E J, Blunier T, Spahni R. 2010. Patterns of millennial variability over the last 500 ka. Clim Past, 6: 295–303

    Article  Google Scholar 

  • Solé J, Turiel A, Llebot J E. 2007. Using empirical mode decomposition to correlate paleoclimatc time series. Nat Hazard Earth Sys, 7: 299–307

    Article  Google Scholar 

  • Sun X, Luo Y, Huang F, Tian J, Wang P. 2003. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian Monsoon. Mar Geol, 201: 97–118

    Article  Google Scholar 

  • Sun Y, Clemens S C, Morrill C, Lin X, Wang X, An Z. 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci, 5: 46–49

    Article  Google Scholar 

  • Torrence C, Compo G P. 1998. A practical guide to wavelet analysis. Bull Amer Meteorol Soc, 79: 61–78

    Article  Google Scholar 

  • Tuenter E, Weber S L, Hilgen F J, Lourens L J. 2007. Simulating sub-Milankovitch climate variations associated with vegetation dynamics. Clim Past, 3: 169–180

    Article  Google Scholar 

  • Verschuren D, Sinninghe Damsté J S, Moernaut J, Kristen I, Blaauw M, Fagot M, Haug G H, Haug G H. 2009. Half-precessional dynamics of monsoon rainfall near the east African equator. Nature, 462: 637–641

    Article  Google Scholar 

  • Vleeschouwer D, da Silva A C, Boulvain F, Crucifix M, Claeys P. 2012. Precessional and half-precessional climate forcing of mid-Devonian monsoon-like dynamics. Clim Past, 8: 337–351

    Article  Google Scholar 

  • Wang X, Auler A S, Edwards R L, Cheng H, Ito E, Wang Y, Kong X, Solheid M. 2007. Millennial-scale precipitation changes in southern Brazil over the past 90000 years. Geophys Res Lett, 34: 135–147

    Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345–2348

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards R L, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224000 years. Nature, 451: 1090–1093

    Article  Google Scholar 

  • Wei G J, Huang C Y, Wang C C, Lee M Y, Wei K Y. 2006. High-resolution benthic foraminifer δ13C records in the South China Sea during the last 150 ka. Mar Geol, 232: 227–235

    Article  Google Scholar 

  • Weirauch D, Billups K, Martin P. 2008. Evolution of millennial-scale climate variability during the mid-Pleistocene. Paleoceanography, 23: PA3216–16

    Article  Google Scholar 

  • Yu Z, Ding Z. 2003. Nonlinear coupling between 100 ka periodicity of the paleoclimate records in loess and periodicities of precession and semiprecession. Sci China Ser D-Earth Sci, 46: 1077–1087

    Article  Google Scholar 

  • Yuan D, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale J A, An Z, Cai Y. 2004. Timing, duration, and transitions of the last interglacial Asian Monsoon. Science, 304: 575–578

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their constructive comments which significant improved the manuscript. This work was supported by National Natural Science Foundation of China (Grant No. 41572340), and Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. 164320H116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shitao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Chen, S., Yang, S. et al. Multiscale analysis of Asian Monsoon over the past 640 ka. Sci. China Earth Sci. 62, 843–852 (2019). https://doi.org/10.1007/s11430-018-9322-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9322-0

Keywords

Navigation