Skip to main content
Log in

Causes and underlying dynamic processes of the mid-winter suppression in the North Pacific storm track

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Baroclinic wave activity in the North Pacific exhibit peaks in late fall and early spring, and a local minimum in midwinter, when by linear baroclinic instability theory it should attain its maximum. This counterintuitive phenomenon, or “midwinter suppression” (MWM) as called, is investigated with a functional analysis apparatus, multiscale window transform (MWT), and the MWT-based theory of canonical transfer and localized multi-scale energetics analysis, together with a feature tracking technique, using the data from the European Centre for Medium-Range Weather Forecasts ReAnalysis (ERA-40). It is found that the MWM results from a variety of different physical processes, including baroclinic canonical transfer, diabatic effect, energy flux divergence, and frictional dissipation. On one hand, baroclinic canonical transfer and diabatic effect achieve their respective maxima in late fall. More transient available potential energy is produced and then converted to transient kinetic energy, resulting in a stronger storm track in late fall than in midwinter. On the other hand, in early spring, although baroclinic instability and buoyancy conversion are weak, energy flux convergences are substantially strengthened, leading to a net energy inflow into the storm track. Meanwhile, frictional dissipation is greatly reduced in spring; as a result, less transient energy is dissipated in early spring than in midwinter. It is further found that the weakening of baroclinic canonical transfer in midwinter (compared to late fall) is due to the far distance between the storm and the jet stream (located at its southernmost point), which suppresses the interaction between them. Regarding the increase in energy flux convergence in early spring, it appears to originate from the increase (enhancement) in the number (strength) of storms from the upstream into the Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson D, Hodges K I, Hoskins B J. 2003. Sensitivity of feature-based analysis methods of storm tracks to the form of background field removal. Mon Weather Rev, 131: 565–573

    Article  Google Scholar 

  • Athanasiadis P J, Wallace J M, Wettstein J J. 2010. Patterns of wintertime jet stream variability and their relation to the storm tracks. J Atmos Sci, 67: 1361–1381

    Article  Google Scholar 

  • Branstator G. 1992. The maintenance of low-frequency atmospheric anomalies. J Atmos Sci, 49: 1924–1946

    Article  Google Scholar 

  • Blackmon M L, Wallace J M, Lau N C, Mullen S L. 1977. An observational study of the Northern Hemisphere wintertime circulation. J Atmos Sci, 34: 1040–1053

    Article  Google Scholar 

  • Cai M, Yang S, Van Den Dool H M, Kousky V E. 2007. Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Telllus A, 59, doi: 10.1111/j.1600-0870.2006.00213.x

    Google Scholar 

  • Chang E K M. 1993. Downstream development of baroclinic waves as inferred from regression analysis. J Atmos Sci, 50: 2038–2053

    Article  Google Scholar 

  • Chang E K M. 2001. GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J Atmos Sci, 58: 1784–1800

    Article  Google Scholar 

  • Chang E K M. 2003. Midwinter suppression of the Pacific storm track activity as seen in aircraft observations. J Atmos Sci, 60: 1345–1358

    Article  Google Scholar 

  • Chang E K M, Zurita-Gotor P. 2007. Simulating the seasonal cycle of the Northern Hemisphere storm tracks using idealized nonlinear stormtrack models. J Atmos Sci, 64: 2309–2331

    Article  Google Scholar 

  • Chang E K M, Guo Y. 2011. Comments on “The source of the midwinter suppression in storminess over the North Pacific”. J Clim, 24: 5187–5191

    Article  Google Scholar 

  • Chang E K M, Guo Y. 2012. Is Pacific storm-track activity correlated with the strength of upstream wave seeding? J Clim, 25: 5768–5776

    Article  Google Scholar 

  • Chang E K M, Lee S, Swanson K L. 2002. Storm track dynamics. J Clim, 15: 2163–2183

    Article  Google Scholar 

  • Charney J G. 1947. The dynamics of long waves in a baroclinic westerly current. J Meteorol, 4: 136–162

    Article  Google Scholar 

  • Chen S J, Kuo Y H, Zhang P Z, Bai Q F. 1991. Synoptic climatology of cyclogenesis over East Asia, 1958–1987. Mon Weather Rev, 119: 1407–1418

    Article  Google Scholar 

  • Chen Y N, Zhu W J, Yuan K. 2013. An energy analysis of midwinter suppression of the North Pacific storm track (in Chinese). Trans Atmos Sci, 36: 725–733

    Google Scholar 

  • Christoph M, Ulbrich U, Speth P. 1997. Midwinter suppression of Northern Hemisphere storm track activity in the real atmosphere and in GCM experiments. J Atmos Sci, 54: 1589–1599

    Article  Google Scholar 

  • Chung Y S, Hage K D, Reinelt E R. 1976. On lee cyclogenesis and airflow in the Canadian Rocky mountains and the East Asian mountains. Mon Weather Rev, 104: 879–891

    Article  Google Scholar 

  • Deng Y, Mak M. 2005. An idealized model study relevant to the dynamics of the midwinter minimum of the Pacific storm track. J Atmos Sci, 62: 1209–1225

    Article  Google Scholar 

  • Deng Y, Mak M. 2006. Nature of the differences in the intraseasonal variability of the Pacific and Atlantic storm tracks: A diagnostic study. J Atmos Sci, 63: 2602–2615

    Article  Google Scholar 

  • Eady E T. 1949. Long waves and cyclone waves. Tellus, 1: 33–52

    Article  Google Scholar 

  • Farrell B. 1984. Modal and non-modal baroclinic waves. J Atmos Sci, 41: 668–673

    Article  Google Scholar 

  • Han B, Ren X J, Yang X Q. 2007. Analysis of the North Pacific storm track anomaly and the relationship with zonal wind (in Chinese). J Meteorol Sci, 27: 237–245

    Article  Google Scholar 

  • Harnik N, Chang E K M. 2004. The effects of variations in jet width on the growth of baroclinic waves: Implications for midwinter Pacific storm track variability. J Atmos Sci, 61: 23–40

    Article  Google Scholar 

  • Hodges K I. 1994. A general method for tracking analysis and its application to meteorological data. Mon Weather Rev, 122: 2573–2586

    Article  Google Scholar 

  • Hodges K I. 1995. Feature tracking on the unit sphere. Mon Weather Rev, 123: 3458–3465

    Article  Google Scholar 

  • Hodges K I. 1999. Adaptive constraints for feature tracking. Mon Weather Rev, 127: 1362–1373

    Article  Google Scholar 

  • Hoskins B J, Hodges K I. 2002. New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci, 59: 1041–1061

    Article  Google Scholar 

  • Lau N C. 1988. Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J Atmos Sci, 45: 2718–2743

    Article  Google Scholar 

  • Lee S S, Lee J Y, Ha K J, Wang B, Kitoh A, Kajikawa Y, Abe M. 2013. Role of the Tibetan plateau on the annual variation of mean atmospheric circulation and storm-track activity. J Clim, 26: 5270–5286

    Article  Google Scholar 

  • Lee S S, Lee J Y, Wang B, Jin F F, Lee W J, Ha K J. 2011. A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: Local energetics and moisture effect. Clim Dyn, 37: 2455–2469

    Article  Google Scholar 

  • Liang X S. 2016. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J Atmos Sci, 73: 4439–4468

    Article  Google Scholar 

  • Liang X S, Anderson D G M. 2007. Multiscale window transform. Multiscale Model Simul, 6: 437–467

    Article  Google Scholar 

  • Liang X S, Robinson A R. 2005. Localized multiscale energy and vorticity analysis. Dyn Atmos Oceans, 38: 195–230

    Article  Google Scholar 

  • Liang X S, Robinson A R. 2007. Localized multi-scale energy and vorticity analysis. Dyn Atmos Oceans, 44: 51–76

    Article  Google Scholar 

  • Lim G H, Wallace J M. 1991. Structure and evolution of baroclinic waves as inferred from regression analysis. J Atmos Sci, 48: 1718–1732

    Article  Google Scholar 

  • Lindzen R S, Farrell B. 1980. A simple approximate result for the maximum growth rate of baroclinic instabilities. J Atmos Sci, 37: 1648–1654

    Article  Google Scholar 

  • Lorenz E N. 1955. Available potential energy and the maintenance of the general circulation. Tellus, 7: 157–167

    Article  Google Scholar 

  • Ma J, Liang X S. 2017. Multiscale dynamical processes underlying the wintertime Atlantic blockings. J Atmos Sci, 74: 3815–3831

    Article  Google Scholar 

  • Nakamura H. 1992. Midwinter suppression of baroclinic wave activity in the Pacific. J Atmos Sci, 49: 1629–1642

    Article  Google Scholar 

  • Nakamura H, Sampe T. 2002. Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter. Geophys Res Lett, 29: 8–1–8–4

    Google Scholar 

  • Nakamura H, Izumi T, Sampe T. 2002. Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J Clim, 15: 1855–1874

    Article  Google Scholar 

  • Newton C W. 2004. Associations between twice-yearly oscillations of the North Pacific cyclone track and upper-tropospheric circulations over the eastern hemisphere. Mon Weather Rev, 132: 348–367

    Article  Google Scholar 

  • Park H S, Chiang J C H, Son S W. 2010. The role of the central Asian mountains on the midwinter suppression of North Pacific storminess. J Atmos Sci, 67: 3706–3720

    Article  Google Scholar 

  • Penny S, Roe G H, Battisti D S. 2010. The source of the midwinter suppression in storminess over the North Pacific. J Clim, 23: 634–648

    Article  Google Scholar 

  • Penny S M, Roe G H, Battisti D S. 2011. Reply. J Clim, 24: 5192–5194

    Article  Google Scholar 

  • Penny S M, Battisti D S, Roe G H. 2013. Examining mechanisms of variability within the Pacific storm track: Upstream seeding and jet-core strength. J Clim, 26: 5242–5259

    Article  Google Scholar 

  • Petterssen S, Smebye S J. 1971. On the development of extratropical cyclones. Q J R Met Soc, 97: 457–482

    Article  Google Scholar 

  • Pierrehumbert R T, Swanson K L. 1995. Baroclinic instability. Annu Rev Fluid Mech, 27: 419–467

    Article  Google Scholar 

  • Robinson D P, Black R X. 2005. The statistics and structure of subseasonal midlatitude variability in NASA GSFC GCMs. J Clim, 18: 3294–3316

    Article  Google Scholar 

  • Robinson D P, Black R X. 2006. Baroclinic development in observations and NASA GSFC general circulation models. Mon Weather Rev, 134: 1161–1173

    Article  Google Scholar 

  • Simmons A J, Hoskins B J. 1978. The life cycles of some nonlinear baroclinic waves. J Atmos Sci, 35: 414–432

    Article  Google Scholar 

  • Strang G, Nguyen T. 1997. Wavelets and Filter Banks. Wellesley-Camb Press. 520

    Google Scholar 

  • Uppala S M, KÅllberg P W, Simmons A J, Andrae U, Bechtold V D C, Fiorino M, Gibson J K, Haseler J, Hernandez A, Kelly G A, Li X, Onogi K, Saarinen S, Sokka N, Allan R P, Andersson E, Arpe K, Balmaseda M A, Beljaars A C M, Berg L V D, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins B J, Isaksen L, Janssen P, Jenne R, Mcnally A P, Mahfouf J F, Morcrette J J, Rayner N A, Saunders R W, Simon P, Sterl A, Trenberth K E, Untch A, Vasiljevic D, Viterbo P, Woollen J. 2005. The ERA-40 re-analysis. Q J R Meteorol Soc, 131: 2961–3012

    Article  Google Scholar 

  • Wang C C, Rogers J C. 2001. A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon Weather Rev, 129: 1481–1499

    Article  Google Scholar 

  • Wang L, Liang X S. 2017. A diagnosis of some dynamical processes underlying a higher-latitude typhoon using the multiscale window transform. Atmosphere, 8: 118

    Article  Google Scholar 

  • Wettstein J J, Wallace J M. 2010. Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J Atmos Sci, 67: 1420–1437

    Article  Google Scholar 

  • Xu F, Liang X S. 2017. On the generation and maintenance of the 2012/13 sudden stratospheric warming. J Atmos Sci, 74: 3209–3228

    Article  Google Scholar 

  • Yang Y, Liang X S. 2016. The instabilities and multiscale energetics underlying the mean-interannual-eddy interactions in the Kuroshio extension region. J Phys Oceanogr, 46: 1477–1494

    Article  Google Scholar 

  • Yao Y, Zhong Z, Yang X Q. 2018. Influence of the subarctic front intensity on the midwinter suppression of the North Pacific storm track. Dyn Atmos Oceans, 81: 63–72

    Article  Google Scholar 

  • Yin J H. 2002. The peculiar behavior of baroclinic waves during the midwinter suppression of the Pacific storm track. Doctoral Dissertation. University of Washington. 137

    Google Scholar 

  • Zhang Y. 1997. On the mechanisms for the mid-winter suppression of the Pacific storm track. Doctoral Dissertation. Princeton: University of Princeton

    Google Scholar 

  • Zhang Y, Held I M. 1999. A linear stochastic model of a GCM’s midlatitude storm tracks. J Atmos Sci, 56: 3416–3435

    Article  Google Scholar 

  • Zhao Y B, Liang X S. 2018. On the inverse relationship between the boreal wintertime Pacific jet strength and storm-track intensity. J Clim, 31: 9545–9564

    Article  Google Scholar 

  • Zhao Y B, Liang X S, Gan J. 2016. Nonlinear multiscale interactions and internal dynamics underlying a typical eddy-shedding event at Luzon Strait. J Geophys Res-Oceans, 121: 8208–8229

    Article  Google Scholar 

  • Zhu W J, Sun Z B. 1999. A review on storm track research (in Chinese). J Nanjing Inst Meteorol, 22: 121–127

    Google Scholar 

  • Zhu W J, Sun Z B. 2000. Interannual variability of northern winter Pcific storm track and its association with 500 hPa height and tropical and northern Pacific sea surface temperature (in Chinese). Acta Meteorol Sin, 58: 309–320

    Google Scholar 

Download references

Acknowledgements

Yuanbing ZHAO thanks Brandon J. Bethel for his help. This work was supported by the National Program on Global Change and Air-Sea Interaction (Grants No. GASI-IPOVAI-06), the Jiangsu Provincial Government through the 2015 Jiangsu Program for Innovation Research and Entrepreneurship Groups and the Jiangsu Chair Professorship to XSL, and the National Natural Science Foundation of China (Grants Nos. 41276032 and 41705024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. San Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liang, X.S. Causes and underlying dynamic processes of the mid-winter suppression in the North Pacific storm track. Sci. China Earth Sci. 62, 872–890 (2019). https://doi.org/10.1007/s11430-018-9310-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9310-5

Keywords

Navigation