Skip to main content
Log in

Methane biotransformation in the ocean and its effects on climate change: A review

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Methane is a potent greenhouse gas. Continental margins contain large reservoirs of methane as solid gas hydrate and the dissolved and gaseous forms of methane. Submarine methane seeps along the global continental margins, including the coastal seas, have been estimated to contribute 0.01 to 0.05 Gt of carbon to the atmosphere annually, accounting for between 1% and 5% of the global methane emissions to the atmosphere. Much of this methane is exhausted via microbial anaerobic methane oxidation. Methane biotransformation in the ocean has effects on global climate change. This review mainly introduces the mechanisms of methanogenesis and methane oxidation and describes new findings that will provide information that will improve the understanding of the balance in terms of the generation, migration and consumption of methane in marine environments. Moreover, this review provides new insights into methane biogeochemical cycles and the effects of marine methane budgets on global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baror I, Elvert M, Eckert W, Kushmaro A, Vigderovich H, Zhu Q, Ben- Dov E, Sivan O. 2017. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly reactive minerals. Environ Sci Technol, 51: 12293–12301

    Google Scholar 

  • Beal E J, House C H, Orphan V J. 2009. Manganese- and iron-dependent marine methane oxidation. Science, 325: 184–187

    Google Scholar 

  • Blake L I, Tveit A, Øvreås L, Head I M, Gray N D. 2015. Response of methanogens in arctic sediments to temperature and methanogenic substrate availability. PLoS One, 10: e0129733

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B B, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623–626

    Google Scholar 

  • Boetius A, Wenzhöfer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci, 6: 725–734

    Google Scholar 

  • Bratina B J, Brusseau G A, Hanson R S. 1992. Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int J Syst Bacteriol, 42: 645–648

    Google Scholar 

  • Buffett B, Archer D. 2004. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean. Earth Planet Sci Lett, 227: 185–199

    Google Scholar 

  • Burdige D J. 2007. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev, 107: 467–485

    Google Scholar 

  • Caldwell S L, Laidler J R, Brewer E A, Eberly J O, Sandborgh S C, Colwell F S. 2008. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol, 42: 6791–6799

    Google Scholar 

  • Chen J, Jiang X W, Gu J D. 2015. Existence of novel phylotypes of nitritedependent anaerobic methane-oxidizing bacteria in surface and subsurface sediments of the South China Sea. Geomicrobiol J, 32: 1–10

    Google Scholar 

  • Chen Y, Feng X, He Y, Wang F. 2016. Genome analysis of a Limnobacter sp. identified in an anaerobic methane-consuming cell consortium. Front Mar Sci, 3: 257

    Google Scholar 

  • Chen Y, Li Y L, Zhou G T, Li H, Lin Y T, Xiao X, Wang F P. 2015. Biomineralization mediated by anaerobic methane-consuming cell consortia. Sci Rep, 4: 5696

    Google Scholar 

  • Childress J J, Fisher C R, Brooks J M, Kennicutt M C, Bidigare R, Anderson A E. 1986. A methanotrophic marine molluscan (bivalvia, mytilidae) symbiosis: Mussels fueled by gas. Science, 233: 1306–1308

    Google Scholar 

  • Cicerone R J, Oremland R S. 1988. Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycle, 2: 299–327

    Google Scholar 

  • Conrad R. 2009. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ Microbiol Rep, 1: 285–292

    Google Scholar 

  • D’Hondt S, Rutherford S, Spivack A J. 2002. Metabolic activity of subsurface life in deep-sea sediments. Science, 295: 2067–2070

    Google Scholar 

  • Dalton H. 1992. Methane oxidation by methanotrophs. In: Murrell J C, Dalton H, eds. Methane and Methanol Utilizers. Biotechnology Handbooks, vol 5. Boston: Springer. 85–114

    Google Scholar 

  • Deutzmann J S, Stief P, Brandes J, Schink B. 2014. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci USA, 111: 18273–18278

    Google Scholar 

  • Dickens G R. 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett, 213: 169–183

    Google Scholar 

  • Divins D L. 2003. Total Sediment Thickness of the World’s Oceans & Marginal Seas. NOAA National Geophysical Data Center, Boulder

    Google Scholar 

  • Egert M, Wagner B, Lemke T, Brune A, Friedrich M W. 2003. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol, 69: 6659–6668

    Google Scholar 

  • Enzmann F, Mayer F, Rother M, Holtmann D. 2018. Methanogens: Biochemical background and biotechnological applications. AMB Expr, 8: 1, https://doi.org/10.1186/s13568-017-0531-x

    Google Scholar 

  • Ettwig K F, Butler M K, Le Paslier D, Pelletier E, Mangenot S, Kuypers M M M, Schreiber F, Dutilh B E, Zedelius J, de Beer D, Gloerich J, Wessels H J C T, van Alen T, Luesken F, Wu M L, van de Pas-Schoonen K T, Op den Camp H J M, Janssen-Megens E M, Francoijs K J, Stunnenberg H, Weissenbach J, Jetten M S M, Strous M. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464: 543–548

    Google Scholar 

  • Ettwig K F, Shima S, van de Pas-Schoonen K T, Kahnt J, Medema M H, Op den Camp H J M, Jetten M S M, Strous M. 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol, 10: 3164–3173

    Google Scholar 

  • Ettwig K F, van Alen T, van de Pas-Schoonen K T, Jetten M S M, Strous M. 2009. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol, 75: 3656–3662

    Google Scholar 

  • Ettwig K F, Zhu B, Speth D, Keltjens J T, Jetten M S M, Kartal B. 2016. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA, 113: 12792–12796

    Google Scholar 

  • Evans P N, Parks D H, Chadwick G L, Robbins S J, Orphan V J, Golding S D, Tyson G W. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science, 350: 434–438

    Google Scholar 

  • Feng D, Chen D, Roberts H H. 2009. Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Mar Pet Geol, 26: 1190–1198

    Google Scholar 

  • Ferry J G. 2010. The chemical biology of methanogenesis. Planet Space Sci, 58: 1775–1783

    Google Scholar 

  • Ferry J G, Lessner D J. 2008. Methanogenesis in marine sediments. Ann New York Acad Sci, 1125: 147–157

    Google Scholar 

  • Fischer R, Thauer R K. 1990. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett, 269: 368–372

    Google Scholar 

  • Fisher C R, Brooks J M, Vodenichar J S, Zande J M, Childress J J, Jr. R A B. 1993. The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Mar Ecol, 14: 277–289

    Google Scholar 

  • Claypool G E, Kvenvolden K A. 1983. Methane and other hydrocarbon gases in marine sediment. Annu Rev Earth Planet Sci, 11: 299–327

    Google Scholar 

  • Giovannelli D, d’Errico G, Fiorentino F, Fattorini D, Regoli F, Angeletti L, Bakran-Petricioli T, Vetriani C, Yücel M, Taviani M, Manini E. 2016. Diversity and distribution of prokaryotes within a shallow-water pockmark field. Front Microbiol, 7: 941

    Google Scholar 

  • Gong W, Hao B, Wei Z, Ferguson Jr. D J, Tallant T, Krzycki J A, Chan M K. 2008. Structure of the a2e2 Ni-dependent CO dehydrogenase component of the Methanosarcina barkeri acetyl-CoA decarbonylase/synthase complex. Proc Natl Acad Sci USA, 105: 9558–9563

    Google Scholar 

  • Graham D W, Chaudhary J A, Hanson R S, Arnold R G. 1993. Factors affecting competition between type I and type II methanotrophs in twoorganism, continuous-flow reactors. Microb Ecol, 25: 1–27

    Google Scholar 

  • Green P N. 1992. Taxonomy of methylotrophic bacteria. Methane and methanol utilizers. Boston: Springer. 23–84

    Google Scholar 

  • Groβkopf R, Stubner S, Liesack W. 1998. Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microb, 64: 4983–4989

    Google Scholar 

  • Hallam S J, Putnam N, Preston C M, Detter J C, Rokhsar D, Richardson P M, DeLong E F. 2004. Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science, 305: 1457–1462

    Google Scholar 

  • Hanson R S, Hanson T E. 1996. Methanotrophic bacteria. Microbiol Rev, 60: 439–471

    Google Scholar 

  • Haroon M F, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson G W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500: 567–570

    Google Scholar 

  • He X, Sun L, Xie Z, Huang W, Long N, Li Z, Xing G. 2013. Sea ice in the Arctic Ocean: Role of shielding and consumption of methane. Atmos Environ, 67: 8–13

    Google Scholar 

  • He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert S M, Wang F. 2016. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol, 1: 16035

    Google Scholar 

  • Hinrichs K U, Hayes J M, Sylva S P, Brewer P G, DeLong E F. 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398: 802–805

    Google Scholar 

  • Hoehler T M, Alperin M J, Albert D B, Martens C S. 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycle, 8: 451–463

    Google Scholar 

  • Huang L N, Chen Y Q, Zhou H, Luo S, Lan C Y, Qu L H. 2003. Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol, 46: 171–177

    Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell F S, Nealson K H, Horikoshi K, D’Hondt S, Jørgensen B B. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA, 103: 2815–2820

    Google Scholar 

  • Itävaara M, Salavirta H, Marjamaa K, Ruskeeniemi T. 2016. Chapter onegeomicrobiology and metagenomics of terrestrial deep subsurface microbiomes. Adv Appl Microbiol, 94: 1–77, doi: 10.1016/bs. aambs.2015.12.001

    Google Scholar 

  • James R H, Bousquet P, Bussmann I, Haeckel M, Kipfer R, Leifer I, Niemann H, Ostrovsky I, Piskozub J, Rehder G, Treude T, Vielstädte L, Greinert J. 2016. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnol Oceanogr, 61: S283–S299

    Google Scholar 

  • Kallmeyer J, Pockalny R, Ram Adhikari R, Smith D C, D’Hondt S. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 109: 16213–16216

    Google Scholar 

  • Kitidis V, Upstill-Goddard R C, Anderson L G. 2010. Methane and nitrous oxide in surface water along the North-West Passage, Arctic Ocean. Mar Chem, 121: 80–86

    Google Scholar 

  • Knief C. 2015. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol, 6: 1346

    Google Scholar 

  • Knittel K, Boetius A. 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu Rev Microbiol, 63: 311–334

    Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R. 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol, 71: 467–479

    Google Scholar 

  • Lang K. 2014. Diversity, ultrastructure, and comparative genomics of “Methanoplasmatales”, the seventh order of methanogens. Doctoral Dissertation. Marburg: Universität Marburg

    Google Scholar 

  • Lee H S, Lee J C, Lee I K, Moon H B, Chang Y S, Jacobs D R, Lee D H. 2011. Associations among organochlorine pesticides, methanobacteriales, and obesity in Korean women. PLoS One, 6: e27773

    Google Scholar 

  • Lesniewski R A, Jain S, Anantharaman K, Schloss P D, Dick G J. 2012. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J, 6: 2257–2268

    Google Scholar 

  • Lessner D J. 2001. Methanogenesis Biochemistry. Hoboken: John Wiley & Sons

    Google Scholar 

  • Lever M A. 2012. Acetogenesis in the energy-starved deep biosphere—A paradox? Front Microbiol, 2: 284

    Google Scholar 

  • Lipscomb J D. 1994. Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol, 48: 371–399

    Google Scholar 

  • Liu Y, Whitman W B. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann New York Acad Sci, 1125: 171–189

    Google Scholar 

  • Lloyd K G, Schreiber L, Petersen D G, Kjeldsen K U, Lever M A, Steen A D, Stepanauskas R, Richter M, Kleindienst S, Lenk S, Schramm A, Jørgensen B B. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature, 496: 215–218

    Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ MicroBiol, 73: 3348–3362

    Google Scholar 

  • Lyu Z, Lu Y. 2015. Comparative genomics of three Methanocellales strains reveal novel taxonomic and metabolic features. Environ Microbiol Rep, 7: 526–537

    Google Scholar 

  • Maupin-Furlow J, Ferry J G. 1996. Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid/iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila. J Bacteriol, 178: 340–346

    Google Scholar 

  • McCalley C K, Woodcroft B J, Hodgkins S B, Wehr R A, Kim E H, Mondav R, Crill P M, Chanton J P, Rich V I, Tyson G W, Saleska S R. 2014. Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514: 478–481

    Google Scholar 

  • McGlynn S E, Chadwick G L, Kempes C P, Orphan V J. 2015. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 526: 531–535

    Google Scholar 

  • McInerney M J, Struchtemeyer C G, Sieber J, Mouttaki H, Stams A J M, Schink B, Rohlin L, Gunsalus R P. 2008. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann New York Acad Sci, 1125: 58–72

    Google Scholar 

  • Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. 2014. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J, 8: 650–659

    Google Scholar 

  • Meulepas R J W, Jagersma C G, Khadem A F, Stams A J M, Lens P N L. 2010. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Appl Microbiol Biotechnol, 87: 1499–1506

    Google Scholar 

  • Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner F O, Reinhardt R, Amann R. 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol, 12: 422–439

    Google Scholar 

  • Milkov A V. 2004. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Sci Rev, 66: 183–197

    Google Scholar 

  • Milucka J, Ferdelman T G, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers M M M. 2012. Zerovalent sulphur is a key intermediate in marine methane oxidation. Nature, 491: 541–546

    Google Scholar 

  • Mitterer R M. 2010. Methanogenesis and sulfate reduction in marine sediments: A new model. Earth Planet Sci Lett, 295: 358–366

    Google Scholar 

  • Moran J J, Beal E J, Vrentas J M, Orphan V J, Freeman K H, House C H. 2008. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol, 10: 162–173

    Google Scholar 

  • Murrell J C. 1994. Molecular genetics of methane oxidation. Biodegradation, 5: 145–159

    Google Scholar 

  • Muyzer G, Stams A J M. 2008. The ecology and biotechnology of sulphatereducing bacteria. Nat Rev Microbiol, 6: 441–454

    Google Scholar 

  • Na H, Lever M A, Kjeldsen K U, Schulz F, Jørgensen B B. 2015. Uncultured Desulfobacteraceae and Crenarchaeotal group C3 incorporate 13C-acetate in coastal marine sediment. Environ Microbiol Rep, 7: 614–622

    Google Scholar 

  • Nakagawa S, Takai K. 2006. 3 the isolation of thermophiles from deep-sea hydrothermal environments. Method Microbiol, 35: 55–91

    Google Scholar 

  • Nickel J C, di Primio R, Mangelsdorf K, Stoddart D, Kallmeyer J. 2012. Characterization of microbial activity in pockmark fields of the SWBarents Sea. Mar Geol, 332-334: 152–162

    Google Scholar 

  • Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter E J, Schlüter M, Klages M, Foucher J P, Boetius A. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443: 854–858

    Google Scholar 

  • Niu M, Fan X, Zhuang G, Liang Q, Wang F. 2017. Methane metabolizing microbial communities in the sediment of Haima cold seep area, northwest slope of South China Sea. Fems Microbiol Ecol, 93: fix101

    Google Scholar 

  • Ojima D S, Valentine D W, Mosier A R, Parton W J, Schimel D S. 1993. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 26: 675–685

    Google Scholar 

  • Orcutt B N, Sylvan J B, Knab N J, Edwards K J. 2011. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev, 75: 361–422

    Google Scholar 

  • Ozuolmez D, Na H, Lever M A, Kjeldsen K U, Jørgensen B B, Plugge C M. 2015. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: Teamwork or coexistence? Front Microbiol, 6: 492

    Google Scholar 

  • Padilla C C, Bristow L A, Sarode N, Garcia-Robledo E, Gómez Ramírez E, Benson C R, Bourbonnais A, Altabet M A, Girguis P R, Thamdrup B, Stewart F J. 2016. NC10 bacteria in marine oxygen minimum zones. ISME J, 10: 2067–2071

    Google Scholar 

  • Paul K, Nonoh J O, Mikulski L, Brune A. 2012. “Methanoplasmatales,” thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol, 78: 8245–8253

    Google Scholar 

  • Pernthaler A, Dekas A E, Titus Brown C, Goffredi S K, Embaye T, Orphan V J. 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA, 105: 7052–7057

    Google Scholar 

  • Piñero E, Marquardt M, Hensen C, Haeckel M, Wallmann K. 2013. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences, 10: 959–975

    Google Scholar 

  • Poulsen M, Schwab C, Borg Jensen B, Engberg R M, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T. 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun, 4: 1428

    Google Scholar 

  • Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, Smolders A J P, Ettwig K F, Rijpstra W I C, Schouten S, Damsté J S S, Op den Camp H J M, Jetten M S M, Strous M. 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440: 918–921

    Google Scholar 

  • Reeburgh W S. 2007. Oceanic methane biogeochemistry. Chem Rev, 107: 486–513

    Google Scholar 

  • Reitner J, Peckmann J, Blumenberg M, Michaelis W, Reimer A, Thiel V. 2005. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol, 227: 18–30

    Google Scholar 

  • Römer M, Sahling H, Pape T, Bohrmann G, Spieβ V. 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J GEOPHYS RESOCEANS, 117(C10)

    Google Scholar 

  • Roussel E G, Bonavita M A C, Querellou J, Cragg B A, Webster G, Prieur D, Parkes R J. 2008. Extending the sub-sea-floor biosphere. Science, 320: 1046

    Google Scholar 

  • Rudels B, Larsson A M, Sehlstedt P I. 1991. Stratification and water mass formation in the Arctic Ocean: Some implications for the nutrient distribution. Polar Res, 10: 19–32

    Google Scholar 

  • Ruff S E, Biddle J F, Teske A P, Knittel K, Boetius A, Ramette A. 2015. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA, 112: 4015–4020

    Google Scholar 

  • Scheller S, Goenrich M, Boecher R, Thauer R K, Jaun B. 2010. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature, 465: 606–608

    Google Scholar 

  • Schrenk M O, Huber J A, Edwards K J. 2010. Microbial provinces in the subseafloor. Annu Rev Mar Sci, 2: 279–304

    Google Scholar 

  • Schubert C J, Coolen M J L, Neretin L N, Schippers A, Abbas B, Durisch- Kaiser E, Wehrli B, Hopmans E C, Damsté J S S, Wakeham S, Kuypers M M M. 2006. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environ Microbiol, 8: 1844–1856

    Google Scholar 

  • Semiletov I, Savelieva N, Weller G, Pipko I, Pugach S, Gukov A Y, Vasilevskaya L. 2000. The dispersion of Siberian river flows into coastal waters: Meteorological, hydrological and hydrochemical aspects. In: Lewis E L, Jones E P, Lemke P, Prowse T D, Wadhams P, eds. The Freshwater Budget of the Arctic Ocean. Dordrecht: Springer. 323–366

    Google Scholar 

  • Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson O. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327: 1246–1250

    Google Scholar 

  • Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer R K, Ermler U. 2012. Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature, 481: 98–101

    Google Scholar 

  • Shubenkova O V, Likhoshvai A V, Kanapatskii T A, Pimenov N V. 2010. Microbial community of reduced pockmark sediments (Gdansk Deep, Baltic Sea). Microbiology, 79: 799–808

    Google Scholar 

  • Smith D D S, Dalton H. 1989. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). Eur J Biochem, 182: 667–671

    Google Scholar 

  • Söhngen N. 1906. Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen. Zentrabl Bakteriol Parasitenk Infektionskr, 15: 513–517

    Google Scholar 

  • Sommer S, Pfannkuche O, Linke P, Luff R, Greinert J, Drews M, Gubsch S, Pieper M, Poser M, Viergutz T. 2006. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Glob Biogeochem Cycle, 20: GB2019

    Google Scholar 

  • Sorokin D Y, Makarova K S, Abbas B, Ferrer M, Golyshin P N, Galinski E A, Ciordia S, Mena M C, Merkel A Y, Wolf Y I, van Loosdrecht M C M, Koonin E V. 2017. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol, 2: 17081

    Google Scholar 

  • Takai K, Horikoshi K. 1999. Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics, 152: 1285–1297

    Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K. 2008. Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA, 105: 10949–10954

    Google Scholar 

  • Tong H, Feng D, Cheng H, Yang S, Wang H, Min A G, Edwards R L, Chen Z, Chen D. 2013. Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Mar Pet Geol, 43: 260–271

    Google Scholar 

  • Valentine D L, Blanton D C, Reeburgh W S, Kastner M. 2001. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel river Basin. Geochim Cosmochim Acta, 65: 2633–2640

    Google Scholar 

  • Valentine D L, Reeburgh W S. 2000. New perspectives on anaerobic methane oxidation. Environ Microbiol, 2: 477–484

    Google Scholar 

  • Valentine D L, Reeburgh W S, Blanton D C. 2000. A culture apparatus for maintaining H2 at sub-nanomolar concentrations. J Microbiol Methods, 39: 243–251

    Google Scholar 

  • Valenzuela E I, Prieto-Davó A, López-Lozano N E, Hernández-Eligio A, Vega-Alvarado L, Juárez K, García-González A S, López M G, Cervantes F J. 2017. Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl Environ Microbiol, 83: e00645–17

    Google Scholar 

  • Vanwonterghem I, Evans P N, Parks D H, Jensen P D, Woodcroft B J, Hugenholtz P, Tyson G W. 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol, 1: 16170

    Google Scholar 

  • Wallmann K, Pinero E, Burwicz E, Haeckel M, Hensen C, Dale A, Ruepke L. 2012. The global inventory of methane hydrate in marine sediments: A theoretical approach. Energies, 5: 2449–2498

    Google Scholar 

  • Wang F P, Zhang Y, Chen Y, He Y, Qi J, Hinrichs K U, Zhang X X, Xiao X, Boon N. 2014. Methanotrophic archaea possessing diverging methane- oxidizing and electron-transporting pathways. Isme J, 8: 1069–1078

    Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer H E, Boetius A. 2015. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 526: 587–590

    Google Scholar 

  • Weiland P. 2010. Biogas production: Current state and perspectives. Appl Microbiol Biotechnol, 85: 849–860

    Google Scholar 

  • Wu M L, de Vries S, van Alen T A, Butler M K, Op den Camp H J M, Keltjens J T, Jetten M S M, Strous M. 2011. Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph ‘Candidatus Methylomirabilis oxyfera’. Microbiology, 157: 890–898

    Google Scholar 

  • Xiao K Q, Beulig F, Kjeldsen K U, Jørgensen B B, Risgaard-Petersen N. 2017. Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front Microbiol, 8: 1198

    Google Scholar 

  • Zhang Y, Henriet J P, Bursens J, Boon N. 2010. Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresource Tech, 101: 3132–3138

    Google Scholar 

  • Zhang Y, Maignien L, Zhao X, Wang F, Boon N. 2011. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol, 11: 137

    Google Scholar 

  • Zhuang G. 2014. Methylotrophic methanogenesis and potential methylated substrates in marine sediment. Doctoral Dissertation. Bremen: University of Bremen

    Google Scholar 

  • Zhuang G C, Heuer V B, Lazar C S, Goldhammer T, Wendt J, Samarkin V A, Elvert M, Teske A P, Joye S B, Hinrichs K U. 2018. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochim Cosmochim Acta, 224: 171–186

    Google Scholar 

  • Zhuang G C, Lin Y S, Bowles M W, Heuer V B, Lever M A, Elvert M, Hinrichs K U. 2017. Distribution and isotopic composition of trimethylamine, dimethylsulfide and dimethylsulfoniopropionate in marine sediments. Mar Chem, 196: 35–46

    Google Scholar 

  • Zhuang G C, Lin Y S, Elvert M, Heuer V B, Hinrichs K U. 2014. Gas chromatographic analysis of methanol and ethanol in marine sediment pore waters: Validation and implementation of three pretreatment techniques. Mar Chem, 160: 82–90

    Google Scholar 

  • Zhuang G C, Elling F J, Nigro L M, Samarkin V, Joye S B, Teske A, Hinrichs K U. 2016. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta, 187: 1–20

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Guangchao Zhuang from Georgia University, Dr. Yinzhao Wang, Lei Xu and Lewen Liang from Shanghai Jiao Tong University for providing several helpful comments and suggestions. This work was supported by the State Key R & D Project of China (Grant No. 2016YFA0601102) and the National Natural Science Foundation of China (Grant Nos. 41525011, 91228201 & 91428308) and the National Special Project on Gas Hydrate of China (Grant Nos. GZH201100311 & DD20160217). This study is also a contribution to the international IMBER project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, M., Liang, W. & Wang, F. Methane biotransformation in the ocean and its effects on climate change: A review. Sci. China Earth Sci. 61, 1697–1713 (2018). https://doi.org/10.1007/s11430-017-9299-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9299-4

Keywords

Navigation