Skip to main content
Log in

Impacts of hydraulic redistribution on eco-hydrological cycles: A case study over the Amazon basin

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Hydraulic redistribution (HR) refers to the process of soil water transport through the low-resistance pathway provided by plant roots. It has been observed in field studies and proposed to be one of the processes that enable plants to resist water limitations. However, most land-surface models (LSMs) currently do not include this underground root process. In this study, a HR scheme was incorporated into the Community Land Model version 4.5 (CLM4.5) to investigate the effect of HR on the eco-hydrological cycle. Two paired numerical simulations (with and without the new HR scheme) were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon. Simulations for the BRSa3 site in the Amazon showed that HR during the wet season was small, <0.1 mm day–1, transferring water from shallow wet layers to deep dry layers at night; however, HR in the dry season was more obvious, up to 0.3 mm day–1, transferring water from deep wet layers to shallow dry layers at night. By incorporating HR into CLM4.5, the new model increased gross primary production (GPP) and evapotranspiration (ET) by 10% and 15%, respectively, at the BRSa3 site, partly overcoming the underestimation. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and ET) to seasonal drought and the severe drought of 2005 were better captured with the HR scheme incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armas C, Padilla F M, Pugnaire F I, Jackson R B. 2010. Hydraulic lift and tolerance to salinity of semiarid species: Consequences for species interactions. Oecologia, 162: 11–21

    Article  Google Scholar 

  • Avissar R, Silva Dias P L, Silva Dias M A F, Nobre C. 2002. The largescale biosphere-atmosphere experiment in Amazonia (LBA): Insights and future research needs. J Geophys Res, 107: 8086

    Article  Google Scholar 

  • Baker I T, Prihodko L, Denning A S, Goulden M, Miller S, Da Rocha H R. 2008. Seasonal drought stress in the Amazon: Reconciling models and observations. J Geophys Res, 113: G00B01

    Article  Google Scholar 

  • Bauerle T L, Richards J H, Smart D R, Eissenstat D M. 2007. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant Cell Environ, 31: 177–186

    Google Scholar 

  • Bonan G B, Levis S, Kergoat L, Oleson K W. 2002. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Glob Biogeochem Cycle, 16: 5-1–5-23

    Article  Google Scholar 

  • Brooks J R, Meinzer F C, Coulombe R, Gregg J. 2002. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol, 22: 1107–1117

    Article  Google Scholar 

  • Burgess S S O, Adams M A, Turner N C, Ong C K. 1998. The redistribution of soil water by tree root systems. Oecologia, 115: 306–311

    Article  Google Scholar 

  • Chen J L, Wilson C R, Tapley B D, Yang Z L, Niu G Y. 2009. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res, 114: B05404

    Google Scholar 

  • Domec J C, Warren J M, Meinzer F C, Brooks J R, Coulombe R. 2004. Native root xylem embolism and stomatal closure in stands of Douglasfir and ponderosa pine: Mitigation by hydraulic redistribution. Oecologia, 141: 7–16

    Article  Google Scholar 

  • Emerman S H, Dawson T E. 1996. Hydraulic lift and its influence on the water content of the rhizosphere: An example from sugar maple, Acer saccharum. Oecologia, 108: 273–278

    Article  Google Scholar 

  • Fisher R A, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell N G, Knox R G, Koven C, Holm J, Rogers B M, Spessa A, Lawrence D, Bonan G. 2015. Taking off the training wheels: The properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geosci Model Dev, 8: 3593–3619

    Article  Google Scholar 

  • Hao G Y, Jones T J, Luton C, Zhang Y J, Manzane E, Scholz F G, Bucci S J, Cao K F, Goldstein G. 2009. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients: Impacts on hydraulic architecture and gas exchange. Tree Physiol, 29: 697–705

    Article  Google Scholar 

  • Hudiburg T W, Law B E, Thornton P E. 2013. Evaluation and improvement of the Community Land Model (CLM4) in Oregon forests. Biogeosciences, 10: 453–470

    Article  Google Scholar 

  • Hultine K R, Williams D G, Burgess S S O, Keefer T O. 2003. Contrasting patterns of hydraulic redistribution in three desert phreatophytes. Oecologia, 135: 167–175

    Article  Google Scholar 

  • Hultine K R, Scott R L, Cable W L, Goodrich D C, Williams D G. 2004. Hydraulic redistribution by a dominant, warm-desert phreatophyte: Seasonal patterns and response to precipitation pulses. Funct Ecol, 18: 530–538

    Article  Google Scholar 

  • Ishikawa C M, Bledsoe C S. 2000. Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: Evidence for hydraulic lift. Oecologia, 125: 459–465

    Article  Google Scholar 

  • Jia B H, Xie Z H, Zeng Y J, Wang L Y, Wang Y Y, Xie J B, Xie Z P. 2015. Diurnal and seasonal variations of CO2 fluxes and their climate controlling factors for a subtropical forest in Ningxiang. Adv Atmos Sci, 32: 553–564

    Article  Google Scholar 

  • Jia B H, Wang Y Y, Xie Z H. 2018. Responses of the terrestrial carbon cycle to drought over China: Modeling sensitivities of the interactive nitrogen and dynamic vegetation. Ecol Model, 368: 52–68

    Article  Google Scholar 

  • Jung M, Reichstein M, Bondeau A. 2009. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6: 2001–2013

    Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne S I, Sheffield J, Goulden M L, Bonan G, Cescatti A, Chen J Q, de Jeu R, Dolman A J, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law B E, Montagnani L, Mu Q Z, Mueller B, Oleson K, Papale D, Richardson A D, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467: 951–954

    Article  Google Scholar 

  • Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D, Chen J Q, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law B E, Lindroth A, Merbold L, Montagnani L, Moors E J, Papale D, Sottocornola M, Vaccari F, Williams C. 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res, 116: G00J07

    Article  Google Scholar 

  • Lawrence P J, Chase T N. 2007. Representing a new MODIS consistent land surface in the community land model (CLM 3.0). J Geophys Res, 112: G01023

    Google Scholar 

  • Liu J G, Jia B H, Xie Z H, Shi C X. 2016. Ensemble simulation of land evapotranspiration in China based on a multi-forcing and multi-model approach. Adv Atmos Sci, 33: 673–684

    Article  Google Scholar 

  • Nadezhdina N, Cermak J, Gasparek J, Nadezhdin V, Prax A. 2006. Vertical and horizontal water redistribution in Norway spruce (Picea abies) roots in the Moravian Upland. Tree Physiol, 26: 1277–1288

    Article  Google Scholar 

  • Natalia R C, Humberto R R, Lucy R H, Alessandro C A, Laura S B, Bradley C, Osvaldo M C, Plinio B C, Fernando L C, Antonio C C, David R F, Michael L G, Bart K, Jair M M, Yadvinder S M, Antonio O M, Scott D M, Antonio D N, Celso V R, Leonardo S, Ricardo K S, Julio T, Steven C W, Fabricio B Z, Scott R S. 2013. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric For Meteorol, 182–183: 128–144

    Google Scholar 

  • Neumann R B, Cardon Z G. 2012. The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies. New Phytologist, 194: 337–352

    Article  Google Scholar 

  • Oleson K W, Lawrence D M, Bonan G, Drewniak B, Huang M, Koven C D, Levis S, Li F, Riley W J, Subin Z M, Swenson S C, Thornton P E, Bozbiyik A, Fisher R, Kluzek E, Lamarque J E, Lawrence P J, Leung L R, Lipscomb W, Muszala S, Ricciuto D M, Sacks W, Sun Y, Tang J, Yang Z L. 2013. Technical Description of Version 4.5 of the Community Land Model (CLM), NCAR Tech. Note, NCAR/TN-503+STR, National Center for Atmospheric Research, 434

    Google Scholar 

  • Oliveira R S, Dawson T E, Burgess S S O. 2005. Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil. J Trop Ecol, 21: 585–588

    Article  Google Scholar 

  • Prieto I, Martínez-Tillería K, Martínez-Manchego L, Montecinos S, Pugnaire F I, Squeo F A. 2010. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: Patterns and control mechanisms. Oecologia, 163: 855–865

    Article  Google Scholar 

  • Raczka B, Duarte H F, Koven C D, Ricciuto D, Thornton P E, Lin J C, Bowling D R. 2016. An observational constraint on stomatal function in forests: Evaluating coupled carbon and water vapor exchange with carbon isotopes in the community land model (CLM4.5). Biogeosciences, 13: 5183–5204

    Article  Google Scholar 

  • Richards J H, Caldwell M M. 1987. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73: 486–489

    Article  Google Scholar 

  • Ryel R J, Caldwell M M, Yoder C K, Or D, Leffler A. 2002. Hydraulic redistribution in a stand of Artemisia tridentata: Evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130: 173–184

    Article  Google Scholar 

  • Saleska S R, Didan K, Huete A R, da Rocha H R. 2007. Amazon forests green-up during 2005 drought. Science, 318: 612–612

    Article  Google Scholar 

  • Scholz F G, Bucci S J, Hoffmann W A, Meinzer F C, Goldstein G. 2010. Hydraulic lift in a Neotropical savanna: Experimental manipulation and model simulations. Agric For Meteorol, 150: 629–639

    Article  Google Scholar 

  • Schulze E D, Caldwell M M, Canadell J, Mooney H A, Jackson R B, Parson D, Scholes R, Sala O E, Trimborn P. 1998. Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sands. Oecologia, 115: 460–462

    Article  Google Scholar 

  • Scott R L, Cable W L, Hultine K R. 2008. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour Res, 44: W02440

    Google Scholar 

  • Shi X Y, Mao J F, Thornton P E, Huang M. 2013. Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model. Environ Res Lett, 8: 024012

    Article  Google Scholar 

  • Smith D M, Jackson N A, Roberts J M, Ong C K. 1999. Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta. Funct Ecol, 13: 256–264

    Article  Google Scholar 

  • Viovy N. 2011. CRUNCEP Dataset, description available at https://doi.org/dods.extra.cea.fr/data/p529viov/cruncep/readme.htm, data available at https://doi.org/dods.extra.cea.fr/store/p529viov/cruncep/V4_1901_2011/

  • Wang G, Alo C, Mei R, Sun S. 2011. Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest. Plant Ecol, 212: 663–673

    Article  Google Scholar 

  • Wang Y Y, Xie Z H, Jia B H. 2016. Incorporation of a dynamic root distribution into CLM4.5: Evaluation of carbon and water fluxes over the Amazon. Adv Atmos Sci, 33: 1047–1060

    Article  Google Scholar 

  • Wang Y Y, Xie Z H, Jia B H, Yu Y. 2015a. Improving simulation of the terrestrial carbon cycle of China in version 4.5 of the Community Land Model using a revised Vcmax scheme. Atmos Oceanic Sci Lett, 8: 88–94

    Article  Google Scholar 

  • Wang Y Y, Xie Z H, Jia B H, Yu Y. 2015b. Simulation and evaluation of gross primary productivity in China by using land surface model CLM4 (in Chinese). Clim Environ Res, 20: 97–110

    Google Scholar 

  • Warren J M, Meinzer F C, Brooks J R, Domec J C, Coulombe R. 2007. Hydraulic redistribution of soil water in two old-growth coniferous forests: Quantifying patterns and controls. New Phytol, 173: 753–765

    Article  Google Scholar 

  • Warren J M, Hanson P J, Iversen C M, Kumar J, Walker A P, Wullschleger S D. 2015. Root structural and functional dynamics in terrestrial biosphere models-evaluation and recommendations. New Phytol, 205: 59–78

    Article  Google Scholar 

  • Yan B Y, Dickinson R E. 2014. Modeling hydraulic redistribution and ecosystem response to droughts over the Amazon basin using Community Land Model 4.0 (CLM4). J Geophys Res-Biogeosci, 119: 2130–2143

    Article  Google Scholar 

  • Zeng N, Yoon J H, Marengo J A, Subramaniam A, Nobre C A, Mariotti A, Neelin J D. 2008. Causes and impacts of the 2005 Amazon drought. Environ Res Lett, 3: 014002

    Article  Google Scholar 

  • Zeng X. 2001. Global vegetation root distribution for land modeling. J Hydrometeorol, 2: 525–530

    Article  Google Scholar 

  • Zeng Y J, Xie Z H, Yu Y, Liu S, Wang L Y, Zou J, Qin P H, Jia B H. 2016. Effects of anthropogenic water regulation and groundwater lateral flow on land processes. J Adv Model Earth Syst, 8: 1106–1131

    Article  Google Scholar 

  • Zheng Z, Wang G. 2007. Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. J Geophys Res, 112: G04012

    Google Scholar 

  • Zhu S G, Chen H S, Zhang X X, Wei N, Wei S G, Yuan H, Zhang S P, Wang L L, Zhou L H, Dai Y J. 2017. Incorporating root hydraulic redistribution and compensatory water uptake in the common land model: Effects on site level and global land modeling. J Geophys Res-Atmos, 122: 7308–7322

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600203), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC012), and the National Natural Science Foundation of China (Grant No. 41575096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghao Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jia, B. & Xie, Z. Impacts of hydraulic redistribution on eco-hydrological cycles: A case study over the Amazon basin. Sci. China Earth Sci. 61, 1330–1340 (2018). https://doi.org/10.1007/s11430-017-9219-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9219-5

Keywords

Navigation