Science China Earth Sciences

, Volume 61, Issue 7, pp 925–939 | Cite as

Distribution of glycerol dialkyl glycerol tetraethers in surface soils along an altitudinal transect at cold and humid Mountain Changbai: Implications for the reconstruction of paleoaltimetry and paleoclimate

  • Yue Li
  • Shijin Zhao
  • Hongye Pei
  • Shi Qian
  • Jingjie Zang
  • Xinyue Dang
  • Huan Yang
Research Paper


Glycerol Dialkyl Glycerol Tetraethers (GDGTs) serve as important tools for the quantitative reconstruction of paleoclimate and paleoecology in both continental and marine environments. Previous studies of GDGTs in the terrestrial environments focused primarily on the soils from the relatively warm-humid or cold-dry regions. However, it is still unclear how GDGTs respond to environmental variables in the cold-humid regions. Here, we collected soils along an altitudinal transect of Mountain (Mt.) Changbai, which has a typical cold-humid climate, to investigate the distribution of GDGTs and the response of GDGT-based proxies to changes in climate along the transect. The shift in the distribution of archaeal isoprenoidal GDGTs (isoGDGTs) revealed that the archaeal community varied significantly along the transect, which can affect the relationship between TEX86 and mean annual air temperature (MAT). In addition, the increased temperature seasonality at higher altitudes exerted a significant impact on TEX86. We proposed a global calibration of TEX86 for the growing season temperature reconstruction in the soil environments: T=85.19×TEX86−46.30 (R2=0.84, p<0.001). The methylation indices for 5-methyl branched GDGTs (brGDGTs) including MBT′5me and MBT5/6, showed correlation with soil water content but no relationship with MAT, indicating that MBT′5meand MBT5/6 from cold-humid environments may be not suitable for temperature and altitude reconstruction. In contrast, the recently developed pH proxies, including MBT′6me (the methylation index for 6-methyl brGDGTs), CBT (Cyclisation index of Branched Tetraethers), IRIIa’ (Isomer ratio of IIa′) and IRIIIa′ (Isomer ratio of IIIa′) exhibited significant correlations with soil pH, suggesting these proxies can still be used for soil pH reconstruction in the coldhumid regions. The combination of MBT′5me and MBT′6me was strongly related to different types of climate (cold-dry, warmhumid, cold-humid, and warm-dry). For example, MBT′5me<0.65 and MBT′6me>0.55 are diagnostic for the cold-humid climate. Thus, the combination of MBT′5me and MBT′6me has the potential as a tool for the identification of different types of paleoclimate.


Cold-humid climate GDGTs Temperature Soil pH Soil water content 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Jia Juan from the Institute of Botany, Chinese Academy of Sciences, for providing some soil samples. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41602189 & 41330103) and the Cradle Plan of China University of Geosciences (Grant No. CUGL170403).

Supplementary material

11430_2017_9168_MOESM1_ESM.pdf (291 kb)
Appendix 1


  1. Anderson V J, Shanahan T M, Saylor J E, Horton B K, Mora A R. 2014. Sources of local and regional variability in the MBT′/CBT paleotemperature proxy: Insights from a modern elevation transect across the Eastern Cordillera of Colombia. Org Geochem, 69: 42–51CrossRefGoogle Scholar
  2. Bai Y, Fang X, Jia G, Sun J, Wen R, Ye Y. 2015. Different altitude effect of leaf wax n-alkane δD values in surface soils along two vapor transport pathways, southeastern Tibetan Plateau. Geochim Cosmochim Acta, 170: 94–107CrossRefGoogle Scholar
  3. Bershaw J, Garzione C N, Higgins P, MacFadden B J, Anaya F, Alvarenga H. 2010. Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth Planet Sci Lett, 289: 530–538CrossRefGoogle Scholar
  4. Besseling M A, Hopmans E C, Sinninghe Damsté J S, Villanueva L. 2017. Benthic Archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone. Biogeosci Discuss, Scholar
  5. Blaga C I, Reichart G J, Heiri O, Sinninghe Damsté J S. 2008. Tetraether membrane lipid distributions in water-column particulate matter and sediments: A study of 47 European lakes along a north-south transect. J Paleolimnol, 41: 523–540CrossRefGoogle Scholar
  6. Blaga C I, Reichart G J, Vissers E W, Lotter A F, Anselmetti F S, Sinninghe Damsté J S. 2011. Seasonal changes in glycerol dialkyl glycerol tetraether concentrations and fluxes in a perialpine lake: Implications for the use of the TEX86 and BIT proxies. Geochim Cosmochim Acta, 75: 6416–6428CrossRefGoogle Scholar
  7. Blyth A J, Schouten S. 2013. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems. Geochim Cosmochim Acta, 109: 312–328CrossRefGoogle Scholar
  8. Blyth A J, Jex C N, Baker A, Khan S J, Schouten S. 2014. Contrasting distributions of glycerol dialkyl glycerol tetraethers (GDGTs) in speleothems and associated soils. Org Geochem, 69: 1–10CrossRefGoogle Scholar
  9. Cao P, Zhang L M, Shen J P, Zheng Y M, Di H J, He J Z. 2012. Distribution and diversity of archaeal communities in selected Chinese soils. Fems Microbiol Ecol, 80: 146–158CrossRefGoogle Scholar
  10. Coffinet S, Huguet A, Williamson D, Fosse C, Derenne S. 2014. Potential of GDGTs as a temperature proxy along an altitudinal transect at Mount Rungwe (Tanzania). Org Geochem, 68: 82–89CrossRefGoogle Scholar
  11. Dang X Y, Xue J T, Yang H, Xie S C. 2016a. Environmental impacts on the distribution of microbial tetraether lipids in Chinese lakes with contrasting pH: Implications for lacustrine paleoenvironmental reconstructions. Sci China Earth Sci, 59: 939–950CrossRefGoogle Scholar
  12. Dang X, Yang H, Naafs B D A, Pancost R D, Xie S. 2016b. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils. Geochim Cosmochim Acta, 189: 24–36CrossRefGoogle Scholar
  13. De Jonge C, Hopmans E C, Stadnitskaia A, Rijpstra W I C, Hofland R, Tegelaar E, Sinninghe Damsté J S. 2013. Identification of novel pentaand hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS. Org Geochem, 54: 78–82CrossRefGoogle Scholar
  14. De Jonge C, Hopmans E C, Zell C I, Kim J H, Schouten S, Sinninghe Damsté J S. 2014a. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction. Geochim Cosmochim Acta, 141: 97–112CrossRefGoogle Scholar
  15. De Jonge C, Stadnitskaia A, Hopmans E C, Cherkashov G, Fedotov A, Sinninghe Damsté J S. 2014b. In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochim Cosmochim Acta, 125: 476–491CrossRefGoogle Scholar
  16. Deng L, Jia G, Jin C, Li S. 2016. Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org Geochem, 96: 11–17CrossRefGoogle Scholar
  17. Deng T, Wang S Q, Xie G P, Li Q, Hou S K, Sun B Y. 2011. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin Sci Bull, 57: 261–269CrossRefGoogle Scholar
  18. Ding S, Xu Y, Wang Y, He Y, Hou J, Chen L, He J S. 2015. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: Implications of brGDGTs-based proxies in cold and dry regions. Biogeosciences, 12: 3141–3151CrossRefGoogle Scholar
  19. Elling F J, Könneke M, Nicol G W, Stieglmeier M, Bayer B, Spieck E, de la Torre J R, Becker K W, Thomm M, Prosser J I, Herndl G J, Schleper C, Hinrichs K U. 2017. Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol, 19: 2681–2700CrossRefGoogle Scholar
  20. Ernst N, Peterse F, Breitenbach S F M, Syiemlieh H J, Eglinton T I. 2013. Biomarkers record environmental changes along an altitudinal transect in the wettest place on Earth. Org Geochem, 60: 93–99CrossRefGoogle Scholar
  21. Ghosh P, Garzione C N, Eiler J M. 2006. Rapid uplift of the altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311: 511–515CrossRefGoogle Scholar
  22. Hough B G, Fan M, Passey B H. 2014. Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction. Earth Planet Sci Lett, 391: 110–120CrossRefGoogle Scholar
  23. Huguet C, Hopmans E C, Febo-Ayala W, Thompson D H, Sinninghe Damsté J S, Schouten S. 2006. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37: 1036–1041CrossRefGoogle Scholar
  24. Jia G, Wei K, Chen F, Peng P. 2008. Soil n-alkane δD vs. altitude gradients along Mount Gongga, China. Geochim Cosmochim Acta, 72: 5165–5174CrossRefGoogle Scholar
  25. Kim J H, Schouten S, Hopmans E C, Donner B, Sinninghe Damsté J S. 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim Cosmochim Acta, 72: 1154–1173CrossRefGoogle Scholar
  26. Kim J H, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koç N, Hopmans E C, Damsté J S S. 2010. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta, 74: 4639–4654CrossRefGoogle Scholar
  27. Lehtovirta L E, Prosser J I, Nicol G W. 2009. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. Fems Microbiol Ecol, 70: 367–376CrossRefGoogle Scholar
  28. Lehtovirta L E, Sayavedra-Soto L A, Gallois N, Schouten S, Stein L Y, Prosser J I, Nicol G W. 2016. Identifying potential mechanisms enabling acidophily in the ammonia-oxidizing archaeon “Candidatus Nitrosotalea devanaterra”. Appl Environ Microbiol, 82: 2608–2619CrossRefGoogle Scholar
  29. Lei Y, Yang H, Dang X, Zhao S, Xie S. 2016. Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality. Org Geochem, 94: 83–94CrossRefGoogle Scholar
  30. Li F, Zheng F, Wang Y, Liu W, Zhang C L. 2017. Thermoplasmatales and methanogens: Potential association with the Crenarchaeol oroduction in Chinese soils. Front Microbiol, 8: Scholar
  31. Liu W, Wang H, Zhang C L, Liu Z, He Y. 2013. Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China. Org Geochem, 57: 76–83Google Scholar
  32. Oppermann B I, Michaelis W, Blumenberg M, Frerichs J, Schulz H M, Schippers A, Beaubien S E, Krüger M. 2010. Soil microbial community changes as a result of long-term exposure to a natural CO2 vent. Geochim Cosmochim Acta, 74: 2697–2716CrossRefGoogle Scholar
  33. Peterse F, van der Meer M T J, Schouten S, Jia G, Ossebaar J, Blokker J, Sinninghe Damsté J S. 2009. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction. Biogeosciences, 6: 2799–2807CrossRefGoogle Scholar
  34. Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S. 2012. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96: 215–229CrossRefGoogle Scholar
  35. Pitcher A, Rychlik N, Hopmans E C, Spieck E, Rijpstra W I C, Ossebaar J, Schouten S, Wagner M, Sinninghe Damsté J S. 2010. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon. Isme J, 4: 542–552CrossRefGoogle Scholar
  36. Powers L A, Werne J P, Johnson T C, Hopmans E C, Sinninghe Damsté J S, Schouten S. 2004. Crenarchaeotal membrane lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction? Geology, 32: 613CrossRefGoogle Scholar
  37. Powers L, Werne J P, Vanderwoude A J, Sinninghe Damsté J S, Hopmans E C, Schouten S. 2010. Applicability and calibration of the TEX86 paleothermometer in lakes. Org Geochem, 41: 404–413CrossRefGoogle Scholar
  38. Schouten S, Hopmans E C, Schefuß E, Sinninghe Damsté J S. 2002. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204: 265–274CrossRefGoogle Scholar
  39. Schouten S, Hopmans E C, Sinninghe Damsté J S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Org Geochem, 54: 19–61CrossRefGoogle Scholar
  40. Sinninghe Damsté J S, Ossebaar J, Schouten S, Verschuren D. 2008. Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania): Implications for the MBT/CBT continental palaeothermometer. Org Geochem, 39: 1072–1076Google Scholar
  41. Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, Jung M Y, Kim J G, Rhee S K, Stieglmeier M, Schleper C. 2012. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b thaumarchaeota in soil. Appl Environ Microbiol, 78: 6866–6874CrossRefGoogle Scholar
  42. Sun J, Xu Q, Liu W, Zhang Z, Xue L, Zhao P. 2014. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr Palaeoclimatol Palaeoecol, 399: 21–30CrossRefGoogle Scholar
  43. Wang H, Liu W, Zhang C L. 2014. Dependence of the cyclization of branched tetraethers (CBT) on soil moisture in the Chinese Loess Plateau and the adjacent areas: Implications for palaeorainfall reconstructions. Biogeosci Discuss, 11: 10015–10043CrossRefGoogle Scholar
  44. Wang H, Liu W, Lu H. 2016. Appraisal of branched glycerol dialkyl glycerol tetraether-based indices for North China. Org Geochem, 98: 118–130CrossRefGoogle Scholar
  45. Wang M D, Liang J, Hou J Z, Hu L. 2016. Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors. Sci China Earth Sci, 59: 961–974CrossRefGoogle Scholar
  46. Weijers J W H, Schouten S, Hopmans E C, Geenevasen J A J, David O R P, Coleman J M, Pancost R D, Sinninghe Damsté J S. 2006. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol, 8: 648–657CrossRefGoogle Scholar
  47. Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71: 703–713CrossRefGoogle Scholar
  48. Weijers J W H, Wiesenberg G L B, Bol R, Hopmans E C, Pancost R D. 2010. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s). Biogeosciences, 7: 2959–2973CrossRefGoogle Scholar
  49. Yang H, Ding W, He G, Xie S. 2010. Archaeal and bacterial tetraether membrane lipids in soils of varied altitudes in Mt. Jianfengling in South China. J Earth Sci, 21 (Suppl): 277–280CrossRefGoogle Scholar
  50. Yang H, Pancost R D, Dang X, Zhou X, Evershed R P, Xiao G, Tang C, Gao L, Guo Z, Xie S. 2014a. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions. Geochim Cosmochim Acta, 126: 49–69CrossRefGoogle Scholar
  51. Yang H, Xiao W, Jia C, Xie S. 2014b. Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils. Front Earth Sci, 9: 13–25CrossRefGoogle Scholar
  52. Yang H, Lü X, Ding W, Lei Y, Dang X, Xie S. 2015. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT′) in soils from an altitudinal transect at Mount Shennongjia. Org Geochem, 82: 42–53CrossRefGoogle Scholar
  53. Yang H, Pancost R D, Jia C, Xie S. 2016. The response of archaeal tetraether membrane lipids in surface soils to temperature: A potential paleothermometer in paleosols. Geomicrobiol J, 33: 98–109CrossRefGoogle Scholar
  54. Zang J, Lei Y Y, Yang H. 2018. Distribution of archaeal and bacterial tetraether lipids in the surface soil of Turpan: Implications for the use of tetraether-based proxies in hot and dry regions. Front Earth Sci, unpublishedGoogle Scholar
  55. Zheng F F, Zhang C L, Chen Y F, Li F Y, Ma C L, Pu Y, Zhu Y Q, Wang Y L, Liu W G. 2016. Branched tetraether lipids in Chinese soils: Evaluating the fidelity of MBT/CBT proxies as paleoenvironmental proxies. Sci China Earth Sci, 59: 1353–1367CrossRefGoogle Scholar
  56. Zhou H, Hu J, Spiro B, Peng P, Tang J. 2014. Glycerol dialkyl glycerol tetraethers in surficial coastal and open marine sediments around China: Indicators of sea surface temperature and effects of their sources. Palaeogeogr Palaeoclimatol Palaeoecol, 395: 114–121CrossRefGoogle Scholar
  57. Zhuang G, Brandon M T, Pagani M, Krishnan S. 2014. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth Planet Sci Lett, 390: 186–198CrossRefGoogle Scholar
  58. Zhuang G, Pagani M, Chamberlin C, Strong D, Vandergoes M. 2015. Altitudinal shift in stable hydrogen isotopes and microbial tetraether distribution in soils from the Southern Alps, NZ: Implications for paleoclimatology and paleoaltimetry. Org Geochem, 79: 56–64CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yue Li
    • 1
  • Shijin Zhao
    • 1
  • Hongye Pei
    • 1
  • Shi Qian
    • 1
  • Jingjie Zang
    • 1
  • Xinyue Dang
    • 1
  • Huan Yang
    • 1
    • 2
  1. 1.School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina

Personalised recommendations