Advertisement

Science China Earth Sciences

, Volume 60, Issue 11, pp 1976–2000 | Cite as

Mantle geochemistry: Insights from ocean island basalts

Review

Abstract

The geochemical study of the Earth’s mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts (OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e., the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial, ranging from unprocessed (or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142Nd, 182W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth’s mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection.

Keywords

Mantle structure Mantle composition Crustal components Crust-mantle interaction Crustal recycling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Science Foundation (Grant No. NSF EAR-1524387) and National Natural Science Foundation of China (Grant No. 41590620).

References

  1. Abouchami W, Hofmann A W, Galer S J G, Frey F A, Eisele J, Feigenson M. 2005. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature, 434: 851–856CrossRefGoogle Scholar
  2. Allègre C J. 1982. Chemical geodynamics. Tectonophysics, 81: 109–132CrossRefGoogle Scholar
  3. Armstrong R L. 1968. A model for the evolution of strontium and lead isotopes in a dynamic Earth. Rev Geophys, 6: 175–199CrossRefGoogle Scholar
  4. Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta, 53: 197–214CrossRefGoogle Scholar
  5. Anderson D L. 2005. Large igneous provinces, delamination, and fertile mantle. Elements, 1: 271–275CrossRefGoogle Scholar
  6. Andreasen R, Sharma M. 2006. Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science, 314: 806–809CrossRefGoogle Scholar
  7. Andreasen R, Sharma M, Subbarao K V, Viladkar S G. 2008. Where on Earth is the enriched Hadean reservoir? Earth Planet Sci Lett, 266: 14–28CrossRefGoogle Scholar
  8. Barfod D N, Ballentine C J, Halliday A N, Fitton J G. 1999. Noble gases in the Cameroon line and the He, Ne, and Ar isotopic compositions of high µ (HIMU) mantle. J Geophys Res, 104: 29509–29527CrossRefGoogle Scholar
  9. Bennett V C, Brandon A D, Nutman A P. 2007. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science, 318: 1907–1910CrossRefGoogle Scholar
  10. Bercovici D, Karato S I. 2003. Whole-mantle convection and the transitionzone water filter. Nature, 425: 39–44CrossRefGoogle Scholar
  11. Bézos A, Humler E. 2005. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta, 69: 711–725CrossRefGoogle Scholar
  12. Birch F. 1952. Elasticity and constitution of the Earth’s interior. J Geophys Res, 57: 227–286CrossRefGoogle Scholar
  13. Bizimis M, Sen G, Salters V J M, Keshav S. 2005. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: Evidence for a depleted component in Hawaiian volcanism. Geochim Cosmochim Acta, 69: 2629–2646CrossRefGoogle Scholar
  14. Bizimis M, Salters V J M, Garcia M O, Norman M D. 2013. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths. Geochem Geophys Geosyst, 14: 4458–4478CrossRefGoogle Scholar
  15. Blichert-Toft J, Frey F A, Albarède F. 1999. Hf isotope evidence for pelagic sediments in the source of Hawaiian Basalts. Science, 285: 879–882CrossRefGoogle Scholar
  16. Blichert-Toft J, White W M. 2001. Hf isotope geochemistry of the Galapagos Islands. Geochem Geophys Geosyst, 2: 1043–2000GC000138Google Scholar
  17. Bouvier A, Boyet M. 2016. Primitive solar system materials and Earth share a common initial 142Nd abundance. Nature, 537: 399–402CrossRefGoogle Scholar
  18. Boyet M, Carlson R W. 2005. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science, 309: 576–581CrossRefGoogle Scholar
  19. Brandon A D, Humayun M, Puchtel I S, Leya I, Zolensky M. 2005. Osmium isotope evidence for an s-process carrier in primitive chondrites. Science, 309: 1233–1236CrossRefGoogle Scholar
  20. Brandon A D, Norman M D, Walker R J, Morgan J W. 1999. 186Os-187Os systematics of Hawaiian picrites. Earth Planet Sci Lett, 174: 25–42CrossRefGoogle Scholar
  21. Brandon A D, Walker R J. 2005. The debate over core-mantle interaction. Earth Planet Sci Lett, 232: 211–225CrossRefGoogle Scholar
  22. Brandon A D, Walker R J, Puchtel I S, Becker H, Humayun M, Revillon S. 2003. 186Os-187Os systematics of Gorgona Island komatiites: Implications for early growth of the inner core. Earth Planet Sci Lett, 206: 411–426CrossRefGoogle Scholar
  23. Burkhardt C, Borg L E, Brennecka G A, Shollenberger Q R, Dauphas N, Kleine T. 2016. A nucleosynthetic origin for the Earth’s anomalous 142Nd composition. Nature, 537: 394–398CrossRefGoogle Scholar
  24. Cabral R A, Jackson M G, Rose-Koga E F, Koga K T, Whitehouse M J, Antonelli M A, Farquhar J, Day J M D, Hauri E H. 2013. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature, 496: 490–493CrossRefGoogle Scholar
  25. Campbell I H, O’Neill H S C. 2012. Evidence against a chondritic Earth. Nature, 483: 553–558CrossRefGoogle Scholar
  26. Carlson R W, Boyet M, Horan M. 2007. Chondrite Barium, Neodymium, and Samarium Isotopic heterogeneity and early Earth differentiation. Science, 316: 1175–1178CrossRefGoogle Scholar
  27. Caro G, Bourdon B. 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: Consequences for the geochemical evolution of the mantle-crust system. Geochim Cosmochim Acta, 74: 3333–3349CrossRefGoogle Scholar
  28. Caro G, Bourdon B, Birck J L, Moorbath S. 2003. 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature, 423: 428–432CrossRefGoogle Scholar
  29. Caro G, Bourdon B, Birck J L, Moorbath S. 2006. High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the Earth’s mantle. Geochim Cosmochim Acta, 70: 164–191CrossRefGoogle Scholar
  30. Caro G, Bourdon B, Halliday A N, Quitté G. 2008. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature, 452: 336–339CrossRefGoogle Scholar
  31. Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336: 667–670CrossRefGoogle Scholar
  32. Chauvel C, Hofmann A W, Vidal P. 1992. HIMU-EM: The French Polynesian connection. Earth Planet Sci Lett, 110: 99–119CrossRefGoogle Scholar
  33. Chauvel C, Hémond C. 2000. Melting of a complete section of recycled oceanic crust: Trace element and Pb isotopic evidence from Iceland. Geochem Geophys Geosyst, 1: 1001–1999GC000002CrossRefGoogle Scholar
  34. Chauvel C, Maury R C, Blais S, Lewin E, Guillou H, Guille G, Rossi P, Gutscher M A. 2012. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochem Geophys Geosyst, 13: Q07005CrossRefGoogle Scholar
  35. Chen H W, Lee T, Lee D C, Shen J J S, Chen J C. 2011. 48Ca heterogeneity in differentiated meteorites. Astrophys J, 743: L23CrossRefGoogle Scholar
  36. Cipriani A, Bonatti E, Carlson R W. 2011. Nonchondritic 142Nd in suboceanic mantle peridotites. Geochem Geophys Geosyst, 12: Q03006CrossRefGoogle Scholar
  37. Clayton R N. 2003. Oxygen isotopes in the Solar System. Space Sci Rev, 106: 19–32CrossRefGoogle Scholar
  38. Clayton R N, Mayeda T K, Olsen E J, Goswami J N. 1991. Oxygen isotope studies of ordinary chondrites. Geochim Cosmochim Acta, 55: 2317–2337CrossRefGoogle Scholar
  39. Clayton R N, Mayeda T K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochim Cosmochim Acta, 63: 2089–2104CrossRefGoogle Scholar
  40. Cooper K M, Eiler J M, Asimow P D, Langmuir C H. 2004. Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet Sci Lett, 220: 297–316CrossRefGoogle Scholar
  41. Cordier C, Chauvel C, Hémond C. 2016. High-precision lead isotopes and stripy plumes: Revisiting the Society chain in French Polynesia. Geochim Cosmochim Acta, 189: 236–250CrossRefGoogle Scholar
  42. Dalton C A, Langmuir C H, Gale A. 2014. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344: 80–83CrossRefGoogle Scholar
  43. Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1–13CrossRefGoogle Scholar
  44. Dasgupta R, Hirschmann M M, McDonough W F, Spiegelman M, Withers A C. 2009. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem Geol, 262: 57–77CrossRefGoogle Scholar
  45. Dasgupta R, Hirschmann M M, Stalker K. 2006. Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite+CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol, 47: 647–671CrossRefGoogle Scholar
  46. Dasgupta R, Jackson M G, Lee C T A. 2010. Major element chemistry of ocean island basalts—Conditions of mantle melting and heterogeneity of mantle source. Earth Planet Sci Lett, 289: 377–392CrossRefGoogle Scholar
  47. Dauphas N, Chen J H, Zhang J, Papanastassiou D A, Davis A M, Travaglio C. 2014. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet Sci Lett, 407: 96–108CrossRefGoogle Scholar
  48. Day J M D, Brandon A D, Walker R J. 2016. Highly siderophile elements in Earth, Mars, the Moon, and Asteroids. Rev Mineral Geochem, 81: 161–238CrossRefGoogle Scholar
  49. Debaille V, O’Neill C, Brandon A D, Haenecour P, Yin Q Z, Mattielli N, Treiman A H. 2013. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet Sci Lett, 373: 83–92CrossRefGoogle Scholar
  50. Delavault H, Chauvel C, Thomassot E, Devey C W, Dazas B. 2016. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc Natl Acad Sci USA, 113: 12952–12956CrossRefGoogle Scholar
  51. Donnelly K E, Goldstein S L, Langmuir C H, Spiegelman M. 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett, 226: 347–366CrossRefGoogle Scholar
  52. Drake M J, Righter K. 2002. Determining the composition of the Earth. Nature, 416: 39–44CrossRefGoogle Scholar
  53. Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Phys Earth Planet Inter, 25: 297–356CrossRefGoogle Scholar
  54. Eggins S M. 1992. Petrogenesis of Hawaiian tholeiites: 1, Phase equilibria constraints. Contrib Mineral Petrol, 110: 387–397CrossRefGoogle Scholar
  55. Eiler J M. 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geo Chem, 43: 319–364CrossRefGoogle Scholar
  56. Eiler J M, Crawford A, Elliott T, Farley K A, Valley J W, Stolper E M. 2000. Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol, 41: 229–256CrossRefGoogle Scholar
  57. Eiler J M, Farley K A, Valley J W, Hauri E, Craig H, Hart S R, Stolper E M. 1997. Oxygen isotope variations in ocean island basalt phenocrysts. Geochim Cosmochim Acta, 61: 2281–2293CrossRefGoogle Scholar
  58. Eiler J M, Farley K A, Valley J W, Hofmann A W, Stolper E M. 1996. Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet Sci Lett, 144: 453–467CrossRefGoogle Scholar
  59. Fantle M S, Tipper E T. 2014. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. Earth-Sci Rev, 129: 148–177CrossRefGoogle Scholar
  60. Farley K A, Natland J H, Craig H. 1992. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet Sci Lett, 111: 183–199CrossRefGoogle Scholar
  61. Farmer GL. 2003. Continental basaltic rocks. Treat Geochem, 3: 85–122Google Scholar
  62. Farnetani C G, Hofmann A W, Class C. 2012. How double volcanic chains sample geochemical anomalies from the lowermost mantle. Earth Planet Sci Lett, 359-360: 240–247CrossRefGoogle Scholar
  63. Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289: 756–758CrossRefGoogle Scholar
  64. Farquhar J, Wing B A, Mc Keegan K D, Harris J W, Cartigny P, Thiemens M H. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science, 298: 2369–2372CrossRefGoogle Scholar
  65. Fischer R A, Nakajima Y, Campbell A J, Frost D J, Harries D, Langenhorst F, Miyajima N, Pollok K, Rubie D C. 2015. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim Cosmochim Acta, 167: 177–194CrossRefGoogle Scholar
  66. Fitton J G, Saunders A D, Norry M J, Hardarson B S, Taylor R N. 1997. Thermal and chemical structure of the Iceland plume. Earth Planet Sci Lett, 153: 197–208CrossRefGoogle Scholar
  67. Fitton J G, Saunders A D, Kempton P D, Hardarson B S. 2003. Does depleted mantle form an intrinsic part of the Iceland plume? Geochem Geophys Geosyst, 4: 1032CrossRefGoogle Scholar
  68. Foley B J. 2015. The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. Astrophys J, 812: 36CrossRefGoogle Scholar
  69. French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525: 95–99CrossRefGoogle Scholar
  70. Frey F A, Green D H. 1974. The mineralogy, geochemistry and origin of Iherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta, 38: 1023–1059CrossRefGoogle Scholar
  71. Frey F A, Huang S, Blichert-Toft J, Regelous M, Boyet M. 2005. Origin of depleted components in basalt related to the Hawaiian hot spot: Evidence from isotopic and incompatible element ratios. Geochem Geophys Geosyst, 6: Q02L07CrossRefGoogle Scholar
  72. Frey F A, Huang S, Xu G, Jochum K P. 2016. The geochemical components that distinguish Loa- and Kea-trend Hawaiian shield lavas. Geochim Cosmochim Acta, 185: 160–181CrossRefGoogle Scholar
  73. Frey F A, Nobre Silva I G, Huang S, Pringle M S, Meleney P R, Weis D. 2015. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen). Earth Planet Sci Lett, 426: 293–304CrossRefGoogle Scholar
  74. Gale A, Dalton C A, Langmuir C H, Su Y, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochem Geophys Geosyst, 14: 489–518CrossRefGoogle Scholar
  75. Gannoun A, Boyet M, Rizo H, El Goresy A. 2011. 146Sm-142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. Proc Natl Acad Sci USA, 108: 7693–7697CrossRefGoogle Scholar
  76. Gast P W, Tilton G R, Hedge C. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145: 1181–1185CrossRefGoogle Scholar
  77. Gonnermann H M, Mukhopadhyay S. 2009. Preserving noble gases in a convecting mantle. Nature, 459: 560–563CrossRefGoogle Scholar
  78. Gordon R G, Phipps Morgan J. 2016. Recent progress in understanding the origin of the Hawaiian-Emperor Bend. In: American Geophysical Union 2016 Fall Meeting, Abstract GP31D-05Google Scholar
  79. Green D H. 1970. A review of experimental evidence on the origin of basaltic and nephelinitic magmas. Phys Earth Planet Inter, 3: 221–235CrossRefGoogle Scholar
  80. Gregory R T, Taylor Jr. H P. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res, 86: 2737–2755CrossRefGoogle Scholar
  81. Guitreau M, Blichert-Toft J, Mojzsis S J, Roth A S G, Bourdon B. 2013. A legacy of Hadean silicate differentiation inferred from Hf isotopes in Eoarchean rocks of the Nuvvuagittuq supracrustal belt (Québec, Canada). Earth Planet Sci Lett, 362: 171–181CrossRefGoogle Scholar
  82. Hanan B B, Graham D W. 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272: 991–995CrossRefGoogle Scholar
  83. Hanyu T, Tatsumi Y, Senda R, Miyazaki T, Chang Q, Hirahara Y, Takahashi T, Kawabata H, Suzuki K, Kimura J I, Nakai S. 2011. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochem Geophys Geosyst, 12: Q0AC09CrossRefGoogle Scholar
  84. Harper C L, Jacobsen S B. 1992. Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature, 360: 728–732CrossRefGoogle Scholar
  85. Harpp K S, Hall P S, Jackson M G. 2014. Galápagos and Easter: A tale of two hotspots. In: Harpp K S, Mittelstaedt E, d’Ozouville E, Graham D W, eds. The Galápagos: A natural laboratory for the Earth Sciences. 27–40Google Scholar
  86. Hart S R. 1971. The geochemistry of basaltic rocks. Carnegie Institution of Washington Yearbook, 70: 353–355Google Scholar
  87. Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753–757CrossRefGoogle Scholar
  88. Hart S R, Hauri E H, Oschmann L A, Whitehead J A. 1992. Mantle plumes and entrainment: Isotopic evidence. Science, 256: 517–520CrossRefGoogle Scholar
  89. Hauri E H. 1996. Major-element variability in the Hawaiian mantle plume. Nature, 382: 415–419CrossRefGoogle Scholar
  90. Hauri E H, Hart S R. 1993. ReOs isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth Planet Sci Lett, 114: 353–371CrossRefGoogle Scholar
  91. Hawkesworth C J, Cawood P A, Dhuime B. 2016. Tectonics and crustal evolution. GSAT, 26: 4–11CrossRefGoogle Scholar
  92. He Y, Wen L, Capdeville Y, Zhao L. 2015. Seismic evidence for an Iceland thermo-chemical plume in the Earth’s lowermost mantle. Earth Planet Sci Lett, 417: 19–27CrossRefGoogle Scholar
  93. Herzberg C. 2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 444: 605–609CrossRefGoogle Scholar
  94. Herzberg C, Asimow P D, Ionov D A, Vidito C, Jackson M G, Geist D. 2013. Nickel and helium evidence for melt above the core-mantle boundary. Nature, 493: 393–397CrossRefGoogle Scholar
  95. Herzberg C, Cabral R A, Jackson M G, Vidito C, Day J M D, Hauri E H. 2014. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth Planet Sci Lett, 396: 97–106CrossRefGoogle Scholar
  96. Hilton D R, Fischer T P, Marty B. 2002. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 47: 319–370CrossRefGoogle Scholar
  97. Hirose K, Takafuji N, Sata N, Ohishi Y. 2005. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett, 237: 239–251CrossRefGoogle Scholar
  98. Hirschmann M M, Kogiso T, Baker M B, Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31: 481–484CrossRefGoogle Scholar
  99. Hirschmann M M, Stolper E M. 1996. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol, 124: 185–208CrossRefGoogle Scholar
  100. Hoernle K, Rohde J, Hauff F, Garbe-Schönberg D, Homrighausen S, Werner R, Morgan J P. 2015. How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nat Commun, 6: 7799CrossRefGoogle Scholar
  101. Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314CrossRefGoogle Scholar
  102. Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229CrossRefGoogle Scholar
  103. Hofmann AW. 2014. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. Treatise Geochem, 3: 67–101CrossRefGoogle Scholar
  104. Hofmann A W, Feigenson M D, Raczek I. 1984. Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969–1971. Contrib Mineral Petrol, 88: 24–35Google Scholar
  105. Hofmann A W, Hart S R. 1978. An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet Sci Lett, 38: 44–62CrossRefGoogle Scholar
  106. Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet Sci Lett, 79: 33–45CrossRefGoogle Scholar
  107. Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 57: 421–436CrossRefGoogle Scholar
  108. Holland G, Ballentine C J. 2006. Seawater subduction controls the heavy noble gas composition of the mantle. Nature, 441: 186–191CrossRefGoogle Scholar
  109. Hopp J, Trieloff M. 2005. Refining the noble gas record of the Réunion mantle plume source: Implications on mantle geochemistry. Earth Planet Sci Lett, 240: 573–588CrossRefGoogle Scholar
  110. Huang S, Farkaš J, Jacobsen S B. 2011a. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 75: 4987–4997CrossRefGoogle Scholar
  111. Huang S, Farkaš J, Yu G, Petaev M I, Jacobsen S B. 2012. Calcium isotopic ratios and rare earth element abundances in refractory inclusions from the Allende CV3 chondrite. Geochim Cosmochim Acta, 77: 252–265CrossRefGoogle Scholar
  112. Huang S, Frey F A. 2005. Recycled oceanic crust in the Hawaiian Plume: Evidence from temporal geochemical variations within the Koolau Shield. Contrib Mineral Petrol, 149: 556–575CrossRefGoogle Scholar
  113. Huang S, Humayun M. 2016. Petrogenesis of high-CaO lavas from Mauna Kea, Hawaii: Constraints from trace element abundances. Geochim Cosmochim Acta, 185: 198–215CrossRefGoogle Scholar
  114. Huang S, Humayun M, Frey F A. 2007. Iron/manganese ratio and manganese content in shield lavas from Ko’olau Volcano, Hawai’i. Geochim Cosmochim Acta, 71: 4557–4569CrossRefGoogle Scholar
  115. Huang S, Hall P S, Jackson M G. 2011b. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nat Geosci, 4: 874–878CrossRefGoogle Scholar
  116. Huang S, Jacobsen S B, Mukhopadhyay S. 2013. 147Sm-143Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio. Proc Natl Acad Sci USA, 110: 4929–4934CrossRefGoogle Scholar
  117. Huang S, Lee C T A, Yin Q Z. 2014. Missing lead and high 3He/4He in ancient sulfides associated with continental crust formation. Sci Rep, 4: 5314CrossRefGoogle Scholar
  118. Huang S, Jacobsen S B. 2017. Calcium isotopic compositions of chondrites. Geochim Cosmochim Acta, 201: 364–376CrossRefGoogle Scholar
  119. Humayun M, Qin L, Norman M D. 2004. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science, 306: 91–94CrossRefGoogle Scholar
  120. Hyung E, Huang S, Petaev M I, Jacobsen S B. 2016. Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth Planet Sci Lett, 440: 158–168CrossRefGoogle Scholar
  121. Hyung E, Jacobsen S B. 2016. 142Nd/144Nd heterogeneity in the proterozoic to phanerozoic mantle and implications for mantle mixing. In: AGU 2016 Fall Meeting DI13B-03Google Scholar
  122. Ireland T J, Walker R J, Brandon A D. 2011. 186Os-187Os systematics of Hawaiian picrites revisited: New insights into Os isotopic variations in ocean island basalts. Geochim Cosmochim Acta, 75: 4456–4475CrossRefGoogle Scholar
  123. Jackson M G, Carlson R W. 2011. An ancient recipe for flood-basalt genesis. Nature, 476: 316–319CrossRefGoogle Scholar
  124. Jackson M G, Carlson R W. 2012. Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem Geophys Geosyst, 13: Q06011Google Scholar
  125. Jackson M G, Carlson R W, Kurz M D, Kempton P D, Francis D, Blusztajn J. 2010. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature, 466: 853–856CrossRefGoogle Scholar
  126. Jackson M G, Dasgupta R. 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett, 276: 175–186CrossRefGoogle Scholar
  127. Jackson M G, Hart S R, Konter J G, Kurz M D, Blusztajn J, Farley K A. 2014. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature, 514: 355–358CrossRefGoogle Scholar
  128. Jackson M G, Hart S R, Koppers A A P, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448: 684–687CrossRefGoogle Scholar
  129. Jackson M G, Hart S R, Saal A E, Shimizu N, Kurz M D, Blusztajn J S, Skovgaard A C. 2008. Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He. Geochem Geophys Geosyst, 9: Q04027CrossRefGoogle Scholar
  130. Jackson M G, Jellinek A M. 2013. Major and trace element composition of the high 3He/4He mantle: Implications for the composition of a nonchonditic Earth. Geochem Geophys Geosyst, 14: 2954–2976CrossRefGoogle Scholar
  131. Jackson M G, Konter J G, Becker T W. 2017. Primordial helium entrained by the hottest mantle plumes. Nature, 542: 340–343CrossRefGoogle Scholar
  132. Jackson M G, Weis D, Huang S. 2012. Major element variations in Hawaiian shield lavas: Source features and perspectives from global ocean island basalt (OIB) systematics. Geochem Geophys Geosyst, 13: Q09009Google Scholar
  133. Jackson C R M, Parman S W, Kelley S P, Cooper R F. 2013. Noble gas transport into the mantle facilitated by high solubility in amphibole. Nat Geosci, 6: 562–565CrossRefGoogle Scholar
  134. Jacobsen S B. 1988. Isotopic constraints on crustal growth and recycling. Earth Planet Sci Lett, 90: 315–329CrossRefGoogle Scholar
  135. Jacobsen S B, Harper C L. 1996. Accretion and early differentiation history of the Earth based on extinct radionuclides. Geophys Monograph, 95: 47–74Google Scholar
  136. Jacobsen S B, Wasserburg G J. 1980. Sm-Nd isotopic evolution of chondrites. Earth Planet Sci Lett, 50: 139–155CrossRefGoogle Scholar
  137. Jacobsen S B, Wasserburg G J. 1984. Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth Planet Sci Lett, 67: 137–150CrossRefGoogle Scholar
  138. Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V. 1979. The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. In: Proceedings of Lunar and Planetary Science Conference, 10. 2031–2050Google Scholar
  139. Jarrard R D. 2003. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst, 4: 8905–8954CrossRefGoogle Scholar
  140. Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C. 2010. The chemical composition of the Earth: Enstatite chondrite models. Earth Planet Sci Lett, 293: 259–268CrossRefGoogle Scholar
  141. Jellinek A M, Jackson M G. 2015. Connections between the bulk composition, geodynamics and habitability of Earth. Nat Geosci, 8: 587–593CrossRefGoogle Scholar
  142. Jones T D, Davies D R, Campbell I H, Wilson C R, Kramer S C. 2016. Do mantle plumes preserve the heterogeneous structure of their deep-mantle source? Earth Planet Sci Lett, 434: 10–17CrossRefGoogle Scholar
  143. Jungck M H A, Shimamura T, Lugmair G W. 1984. Ca isotope variations in Allende. Geochim Cosmochim Acta, 48: 2651–2658CrossRefGoogle Scholar
  144. Kelemen P B. 1986. Assimilation of ultramafic rock in subduction-related magmatic arcs. J Geol, 94: 829–843CrossRefGoogle Scholar
  145. Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325: 605–607CrossRefGoogle Scholar
  146. Kelley D S, Baross J A, Delaney J R. 2002. Volcanoes, fluids, and life at midocean ridge spreading centers. Annu Rev Earth Planet Sci, 30: 385–491CrossRefGoogle Scholar
  147. Keshav S, Gudfinnsson G H, Sen G, Fei Y. 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet Sci Lett, 223: 365–379CrossRefGoogle Scholar
  148. Kinoshita N, Paul M, Kashiv Y, Collon P, Deibel C M, Di Giovine B, Greene J P, Henderson D J, Jiang C L, Marley S T, Nakanishi T, Pardo R C, Rehm K E, Robertson D, Scott R, Schmitt C, Tang X D, Vondrasek R, Yokoyama A. 2012. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the Solar System. Science, 335: 1614–1617CrossRefGoogle Scholar
  149. Kleine T, Münker C, Mezger K, Palme H. 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature, 418: 952–955CrossRefGoogle Scholar
  150. Kogiso T, Hirschmann M M. 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett, 249: 188–199CrossRefGoogle Scholar
  151. Kogiso T, Hirschmann M M, Frost D J. 2003. High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett, 216: 603–617CrossRefGoogle Scholar
  152. Kogiso T, Hirschmann M M, Pertermann M. 2005. High-pressure partial melting of mafic lithologies in the mantle. J Petrol, 45: 2407–2422CrossRefGoogle Scholar
  153. Korenaga J. 2012. Plate tectonics and planetary habitability: Current status and future challenges. Ann New York Acad Sci, 1260: 87–94CrossRefGoogle Scholar
  154. Kunz J, Staudacher T, Allegre C J. 1998. Plutonium-fission xenon found in Earth’s mantle. Science, 280: 877–880CrossRefGoogle Scholar
  155. Kurz M D, Jenkins W J, Hart S R. 1982. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Naure, 297: 43–47Google Scholar
  156. Kushiro I. 2001. Partial melting experiments on peridotite and origin of midocean ridge basalt. Annu Rev Earth Planet Sci, 29: 71–107CrossRefGoogle Scholar
  157. Lambart S, Baker M B, Stolper E M. 2016. The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J Geophys Res-Solid Earth, 121: 5708–5735CrossRefGoogle Scholar
  158. Lambart S, Laporte D, Schiano P. 2009. An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: Implications for the major-element composition of Mid-Ocean Ridge Basalts. Earth Planet Sci Lett, 288: 335–347CrossRefGoogle Scholar
  159. Lassiter J C, Hauri E H. 1998. Osmium-isotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Lett, 164: 483–496CrossRefGoogle Scholar
  160. Lee C T A. 2014. Physics and chemistry of deep continental crust recycling. Treat Geochem, 4: 423–456CrossRefGoogle Scholar
  161. Lee C T A, Luffi P, Höink T, Li J, Dasgupta R, Hernlund J. 2010. Upside- down differentiation and generation of a ‘primordial’ lower mantle. Nature, 463: 930–933CrossRefGoogle Scholar
  162. Lee T, Papanastassiou D A, Wasserburg G J. 1976. Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys Res Lett, 3: 109–112CrossRefGoogle Scholar
  163. Lee T, Papanastassiou D A, Wasserburg G J. 1978. Calcium isotopic anomalies in the Allende meteorite. Astrophys J, 220: L21–L25CrossRefGoogle Scholar
  164. Longhi J. 2002. Some phase equilibrium systematics of lherzolite melting: I. Geochem-Geophys-Geosyst, 3: 1–33CrossRefGoogle Scholar
  165. Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophys J, 591: 1220–1247CrossRefGoogle Scholar
  166. Luguet A, Graham Pearson D, Nowell G M, Dreher S T, Coggon J A, Spetsius Z V, Parman S W. 2008. Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science, 319: 453–456CrossRefGoogle Scholar
  167. Mansur A T, Manya S, Timpa S, Rudnick R L. 2014. Granulite-facies xenoliths in rift basalts of northern Tanzania: Age, composition and origin of archean lower crust. J Petrol, 55: 1243–1286CrossRefGoogle Scholar
  168. Matzen A K, Baker M B, Beckett J R, Stolper E M. 2013. The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. J Petrol, 54: 2521–2545CrossRefGoogle Scholar
  169. McDonough W F, Sun S. 1995. The composition of the Earth. Chem Geol, 120: 223–253CrossRefGoogle Scholar
  170. McKenzie D. 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett, 95: 53–72CrossRefGoogle Scholar
  171. McKenzie D, O’Nions R K. 1983. Mantle reservoirs and ocean island basalts. Nature, 301: 229–231CrossRefGoogle Scholar
  172. Meissner F, Schmidt-Ott W D, Ziegeler L. 1987. Half-life and a-ray energy of 146Sm. Z Physik A-Atomic Nuclei, 327: 171–174CrossRefGoogle Scholar
  173. Montelli R, Nolet G, Dahlen F A, Masters G. 2006. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem Geophys Geosyst, 7: Q11007CrossRefGoogle Scholar
  174. Montelli R, Nolet G, Dahlen F A, Masters G, Engdahl E R, Hung S H. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303: 338–343CrossRefGoogle Scholar
  175. Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43CrossRefGoogle Scholar
  176. Muehlenbachs K, Clayton R N. 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J Geophys Res, 81: 4365–4369CrossRefGoogle Scholar
  177. Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486: 101–104CrossRefGoogle Scholar
  178. Mundl A, Touboul M, Jackson M G, Day J M D, Kurz M D, Lekic V, Helz R T, Walker R J. 2017. Tungsten-182 heterogeneity in modern ocean island basalts. Science, 356: 66–69CrossRefGoogle Scholar
  179. Murakami M, Ohishi Y, Hirao N, Hirose K. 2012. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485: 90–94CrossRefGoogle Scholar
  180. Murphy D T, Brandon A D, Debaille V, Burgess R, Ballentine C. 2010. In search of a hidden long-term isolated sub-chondritic 142Nd/144Nd reservoir in the deep mantle: Implications for the Nd isotope systematics of the Earth. Geochim Cosmochim Acta, 74: 738–750CrossRefGoogle Scholar
  181. Newton J, Franchi I A, Pillinger C T. 2000. The oxygen-isotopic record in enstatite meteorites. Meteoritics Planet Sci, 35: 689–698CrossRefGoogle Scholar
  182. Ni S, Helmberger D V. 2003. Seismological constraints on the South African superplume; could be the oldest distinct structure on earth. Earth Planet Sci Lett, 206: 119–131CrossRefGoogle Scholar
  183. Niederer F R, Papanastassiou D A. 1984. Ca isotopes in refractory inclusions. Geochim Cosmochim Acta, 48: 1279–1293CrossRefGoogle Scholar
  184. Niederer F R, Papanastassiou D A, Wasserburg G J. 1985. Absolute isotopic abundances of Ti in meteorites. Geochim Cosmochim Acta, 49: 835–851CrossRefGoogle Scholar
  185. Nittler L R, Mc Coy T J, Clark P E, Murphy M E, Trombka J I, Jarosewich E. 2004. Bulk element compositions of meteorites: A guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarctic Meteorite Res, 17: 233–253Google Scholar
  186. Niu Y, O’Hara M J. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res, 108: 2209Google Scholar
  187. O’Neil J, Carlson R W, Francis D, Stevenson R K. 2008. Neodymium-142 evidence for Hadean mafic crust. Science, 321: 1828–1831CrossRefGoogle Scholar
  188. O’Neil J, Carlson R W, Paquette J L, Francis D. 2012. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res, 220-221: 23–44CrossRefGoogle Scholar
  189. O’Reilly S Y, Griffin W L. 2013. Mantle metasomatism. In: Harlow DE, Austrheim H, eds. Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes. New York: Springer. 471–534CrossRefGoogle Scholar
  190. Palme H, Lodders K, Jones A. 2014. Solar System abundances of the elements. In: Davis A M, ed. Ch. 2.2 in Treaties on Geochemistry, 2nd ed. Amsterdam: ElsevierGoogle Scholar
  191. Palme H, O’Neill H St C. 2014. Cosmochemical estimates of mantle composition. In: Davis A M, ed. Ch. 3.1 in Treaties on Geochemistry, 2nd ed. Amsterdam: ElsevierGoogle Scholar
  192. Parai R, Mukhopadhyay S, Lassiter J C. 2009. New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook-Austral Islands. Earth Planet Sci Lett, 277: 253–261CrossRefGoogle Scholar
  193. Parai R, Mukhopadhyay S, Standish J J. 2012. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet Sci Lett, 359-360: 227–239CrossRefGoogle Scholar
  194. Parman S W, Kurz M D, Hart S R, Grove T L. 2005. Helium solubility in olivine and implications for high 3He/4He in ocean island basalts. Nature, 437: 1140–1143CrossRefGoogle Scholar
  195. Patterson C. 1956. Age of meteorites and the earth. Geochim Cosmochim Acta, 10: 230–237CrossRefGoogle Scholar
  196. Payne J A, Jackson M G, Hall P S. 2013. Parallel volcano trends and geochemical asymmetry of the Society Islands hotspot track. Geology, 41: 19–22CrossRefGoogle Scholar
  197. Pertermann M, Hirschmann M M. 2003. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res, 108: 2125CrossRefGoogle Scholar
  198. Peto M K, Mukhopadhyay S, Kelley K A. 2013. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet Sci Lett, 369-370: 13–23CrossRefGoogle Scholar
  199. Phipps Morgan J. 2000. Isotope topology of individual hotspot basalt arrays: Mixing curves or melt extraction trajectories? Geochem Geophys Geosyst, 1: 1003CrossRefGoogle Scholar
  200. Pietruszka A J, Norman M D, Garcia M O, Marske J P, Burns D H. 2013. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust. Earth Planet Sci Lett, 361: 298–309CrossRefGoogle Scholar
  201. Poreda R J, Farley K A. 1992. Rare gases in Samoan xenoliths. Earth Planet Sci Lett, 113: 129–144CrossRefGoogle Scholar
  202. Prytulak J, Elliott T. 2007. TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett, 263: 388–403CrossRefGoogle Scholar
  203. Putirka K, Ryerson F J, Perfit M, Ridley W I. 2011. Mineralogy and composition of the oceanic mantle. J Petrol, 52: 279–313CrossRefGoogle Scholar
  204. Qin L, Humayun M. 2008. The Fe/Mn ratio in MORB and OIB determined by ICP-MS. Geochim Cosmochim Acta, 72: 1660–1677CrossRefGoogle Scholar
  205. Ranen M C, Jacobsen S B. 2006. Barium isotopes in chondritic meteorites: Implications for planetary reservoir models. Science, 314: 809–812CrossRefGoogle Scholar
  206. Regelous M, Hofmann A W, Abouchami A, Galer S J G. 2003. Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. J Petrol, 44: 113–140CrossRefGoogle Scholar
  207. Rhodes J M, Huang S, Frey F A, Pringle M, Xu G. 2012. Compositional diversity of Mauna Kea shield lavas recovered by the Hawaii Scientific Drilling Project: Inferences on source lithology, magma supply, and the role of multiple volcanoes. Geochem Geophys Geosyst, 13: Q03014CrossRefGoogle Scholar
  208. Rhodes J M, Vollinger M J. 2005. Ferric/ferrous ratios in 1984 Mauna Loa lavas: A contribution to understanding the oxidation state of Hawaiian magmas. Contrib Mineral Petrol, 149: 666–674CrossRefGoogle Scholar
  209. Ringwood A E. 1990. Slab-mantle interactions. ChemGeol, 82: 187–207Google Scholar
  210. Rizo H, Boyet M, Blichert-Toft J, Rosing M. 2011. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet Sci Lett, 312: 267–279CrossRefGoogle Scholar
  211. Rizo H, Boyet M, Blichert-Toft J, O’Neil J, Rosing M T, Paquette J L. 2012. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature, 491: 96–100CrossRefGoogle Scholar
  212. Rizo H, Walker R J, Carlson R W, Horan M F, Mukhopadhyay S, Manthos V, Francis D, Jackson M G. 2016a. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science, 352: 809–812CrossRefGoogle Scholar
  213. Rizo H, Walker R J, Carlson R W, Touboul M, Horan M F, Puchtel I S, Boyet M, Rosing M T. 2016b. Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim Cosmochim Acta, 175: 319–336CrossRefGoogle Scholar
  214. Rohde J, Hoernle K, Hauff F, Werner R, O’Connor J, Class C, Garbe-Schonberg D, Jokat W. 2013. 70 Ma chemical zonation of the Tristan-Gough hotspot track. Geology, 41: 335–338CrossRefGoogle Scholar
  215. Roth A S G, Bourdon B, Mojzsis S J, Touboul M, Sprung P, Guitreau M, Blichert-Toft J. 2013. Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet Sci Lett, 361: 50–57CrossRefGoogle Scholar
  216. Roth A S G, Bourdon B, Mojzsis S J, Rudge J F, Guitreau M, Blichert-Toft J. 2014a. Combined 147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem Geophys Geosyst, 15: 2329–2345CrossRefGoogle Scholar
  217. Roth A S G, Scherer E E, Maden C, Mezger K, Bourdon B. 2014b. Revisiting the 142Nd deficits in the 1.48 Ga Khariar alkaline rocks, India. Chem Geol, 386: 238–248CrossRefGoogle Scholar
  218. Rudnick R L, Gao S. 2003. The composition of the continental crust. Treat Geochem, 3: 1–64Google Scholar
  219. Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosyst, 5: Q05004CrossRefGoogle Scholar
  220. Salters V J M, Mallick S, Hart S R, Langmuir C E, Stracke A. 2011. Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochem Geophys Geosyst, 12: Q08001Google Scholar
  221. Scherstén A, Elliott T, Hawkesworth C, Norman M. 2004. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth’s core. Nature, 427: 234–237CrossRefGoogle Scholar
  222. Schmandt B, Jacobsen S D, Becker T W, Liu Z, Dueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344: 1265–1268CrossRefGoogle Scholar
  223. Seager S. 2013. Exoplanet habitability. Science, 340: 577–581CrossRefGoogle Scholar
  224. Simon J I, De Paolo D J, Moynier F. 2009. Calcium isotope composition of meteorites, earth, and mars. Astrophys J, 702: 707–715CrossRefGoogle Scholar
  225. Sleep N H. 1990. Hotspots and mantle plumes: Some phenomenology. J Geophys Res, 95: 6715–6736CrossRefGoogle Scholar
  226. Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivinefree mantle source of Hawaiian shield basalts. Nature, 434: 590–597CrossRefGoogle Scholar
  227. Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316: 412–417CrossRefGoogle Scholar
  228. Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012CrossRefGoogle Scholar
  229. Stolper E, Sherman S, Garcia M, Baker M, Seaman C. 2004. Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem Geophys Geosyst, 5: Q07G15CrossRefGoogle Scholar
  230. Stracke A. 2012. Earth’s heterogeneous mantle: A product of convection- driven interaction between crust and mantle. Chem Geol, 330-331: 274–299CrossRefGoogle Scholar
  231. Stracke A, Bourdon B. 2009. The importance of melt extraction for tracing mantle heterogeneity. Geochim Cosmochim Acta, 73: 218–238CrossRefGoogle Scholar
  232. Stracke A, Hofmann A W, Hart S R. 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst, 6: Q05007, doi:10.1029/2004GC000824CrossRefGoogle Scholar
  233. Stuart F M, Lass-Evans S, Godfrey Fitton J, Ellam R M. 2003. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature, 424: 57–59CrossRefGoogle Scholar
  234. Sun S S. 1982. Chemical composition and origin of the Earth’s primitive mantle. Geochim Cosmochim Acta, 46: 179–192CrossRefGoogle Scholar
  235. Sun W, Hu Y, Kamenetsky V S, Eggins S M, Chen M, Arculus R J. 2008. Constancy of Nb/U in the mantle revisited. Geochim Cosmochim Acta, 72: 3542–3549CrossRefGoogle Scholar
  236. Sun W, Ding X, Hu Y, Zartman R E, Arculus R J, Kamenetsky V S, Chen M. 2011. The fate of subducted oceanic crust: A mineral segregation model. Int Geol Rev, 53: 879–893CrossRefGoogle Scholar
  237. Tang M, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351: 372–375CrossRefGoogle Scholar
  238. Tarduno J A, Duncan R A, Scholl D W, Cottrell R D, Steinberger B, Thordarson T, Kerr B C, Neal C R, Frey F A, Torii M, Carvallo C. 2003. The emperor seamounts: Southward motion of the hawaiian hotspot plume in Earth’s mantle. Science, 301: 1064–1069CrossRefGoogle Scholar
  239. Touboul M, Liu J, O’Neil J, Puchtel I S, Walker R J. 2014. New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chem Geol, 383: 63–75CrossRefGoogle Scholar
  240. Touboul M, Puchtel I S, Walker R J. 2012. 182W evidence for long-term preservation of early mantle differentiation products. Science, 335: 1065–1069CrossRefGoogle Scholar
  241. Trieloff M, Kunz J, Clague D A, Harrison D, Allègre C J. 2000. The nature of pristine noble gases in mantle plumes. Science, 288: 1036–1038CrossRefGoogle Scholar
  242. Tucker J M, Mukhopadhyay S, Schilling J G. 2012. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet Sci Lett, 355-356: 244–254CrossRefGoogle Scholar
  243. Tucker J M, Mukhopadhyay S. 2014. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet Sci Lett, 393: 254–265CrossRefGoogle Scholar
  244. Upadhyay D, Scherer E E, Mezger K. 2009. 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature, 459: 1118–1121CrossRefGoogle Scholar
  245. van der Hilst R D, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386: 578–584CrossRefGoogle Scholar
  246. Van Orman J A, Grove T L, Shimizu N. 2002. Diffusive fractionation of trace elements during production and transport of melt in Earth’s upper mantle. Earth Planet Sci Lett, 198: 93–112CrossRefGoogle Scholar
  247. Van Orman J A, Keshav S, Fei Y. 2008. High-pressure solid/liquid partitioning of Os, Re and Pt in the Fe-S system. Earth Planet Sci Lett, 274: 250–257CrossRefGoogle Scholar
  248. Vervoort J D, Patchett P J, Blichert-Toft J, Albarède F. 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett, 168: 79–99CrossRefGoogle Scholar
  249. Vervoort J D, Plank T, Prytulak J. 2011. The Hf-Nd isotopic composition of marine sediments. Geochim Cosmochim Acta, 75: 5903–5926CrossRefGoogle Scholar
  250. Wagner T P, Grove T L. 1998. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib Mineral Petrol, 131: 1–12CrossRefGoogle Scholar
  251. Walker R J, Morgan J W, Horan M F. 1995. Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction? Science, 269: 819–822CrossRefGoogle Scholar
  252. Weaver B L. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet Sci Lett, 104: 381–397CrossRefGoogle Scholar
  253. Weis D, Garcia M O, Rhodes J M, Jellinek M, Scoates J S. 2011. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat Geosci, 4: 831–838CrossRefGoogle Scholar
  254. Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537: 666–670CrossRefGoogle Scholar
  255. White W M. 2015. Isotopes, DUPAL, LLSVPs, and anekantavada. Chem Geol, 419: 10–28CrossRefGoogle Scholar
  256. Willbold M, Elliott T, Moorbath S. 2011. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature, 477: 195–198CrossRefGoogle Scholar
  257. Willbold M, Mojzsis S J, Chen H W, Elliott T. 2015. Tungsten isotope composition of the Acasta gneiss complex. Earth Planet Sci Lett, 419: 168–177CrossRefGoogle Scholar
  258. Wilson J T. 1963. Evidence from islands on the spreading of ocean floors. Nature, 197: 536–538CrossRefGoogle Scholar
  259. Workman R K, Eiler J M, Hart S R, Jackson M G. 2008. Oxygen isotopes in Samoan lavas: Confirmation of continent recycling. Geology, 36: 551–554CrossRefGoogle Scholar
  260. Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72CrossRefGoogle Scholar
  261. Workman R K, Hart S R, Jackson M, Regelous M, Farley K A, Blusztajn J, Kurz M, Staudigel H. 2004. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochem Geophys Geosyst, 5: Q04008CrossRefGoogle Scholar
  262. Wörner G, Zindler A, Staudigel H, Schmincke H U. 1986. Sr, Nd, and Pb isotope geochemistry of Tertiary and Quaternary alkaline volcanics from West Germany. Earth Planet Sci Lett, 79: 107–119CrossRefGoogle Scholar
  263. Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. J Asian Earth Sci, 145: 233–259CrossRefGoogle Scholar
  264. Xu Z, Zheng Y F, Zhao Z F. 2017. The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos, 268-271: 302–319CrossRefGoogle Scholar
  265. Yin Q, Jacobsen S B, Yamashita K, Blichert-Toft J, Télouk P, Albarède F. 2002. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418: 949–952CrossRefGoogle Scholar
  266. Zeng L, Sasselov D D, Jacobsen S B. 2016. Mass-radius relation for rocky planets based on PREM. Astrophys J, 819: 127CrossRefGoogle Scholar
  267. Zhang J, Dauphas N, Davis A M, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nat Geosci, 5: 251–255CrossRefGoogle Scholar
  268. Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326CrossRefGoogle Scholar
  269. Zhang Y. 2014. Quantification of the elemental incompatibility sequence, and composition of the “superchondritic” mantle. Chem Geol, 369: 12–21CrossRefGoogle Scholar
  270. Zhang Z, Stixrude L, Brodholt J. 2013. Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth. Earth Planet Sci Lett, 379: 1–12CrossRefGoogle Scholar
  271. Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48CrossRefGoogle Scholar
  272. Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069CrossRefGoogle Scholar
  273. Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682CrossRefGoogle Scholar
  274. Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Nat Sci Rev, 3: 651–682Google Scholar
  275. Zheng Y F, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci Rev, 62: 105–161CrossRefGoogle Scholar
  276. Zindler A, Jagoutz E, Goldstein S. 1982. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective. Nature, 298: 519–523CrossRefGoogle Scholar
  277. Zindler A, Hart S. 1986. Chemical geodynamics. Annu Rev Earth Planet Sci, 14: 493–571CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of NevadaLas VegasUSA
  2. 2.CAS Key Laboratory of Crust-Mantle Material and Environment, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations