Skip to main content
Log in

Mantle geochemistry: Insights from ocean island basalts

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The geochemical study of the Earth’s mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts (OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e., the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial, ranging from unprocessed (or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142Nd, 182W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth’s mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouchami W, Hofmann A W, Galer S J G, Frey F A, Eisele J, Feigenson M. 2005. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature, 434: 851–856

    Article  Google Scholar 

  • Allègre C J. 1982. Chemical geodynamics. Tectonophysics, 81: 109–132

    Article  Google Scholar 

  • Armstrong R L. 1968. A model for the evolution of strontium and lead isotopes in a dynamic Earth. Rev Geophys, 6: 175–199

    Article  Google Scholar 

  • Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta, 53: 197–214

    Article  Google Scholar 

  • Anderson D L. 2005. Large igneous provinces, delamination, and fertile mantle. Elements, 1: 271–275

    Article  Google Scholar 

  • Andreasen R, Sharma M. 2006. Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science, 314: 806–809

    Article  Google Scholar 

  • Andreasen R, Sharma M, Subbarao K V, Viladkar S G. 2008. Where on Earth is the enriched Hadean reservoir? Earth Planet Sci Lett, 266: 14–28

    Article  Google Scholar 

  • Barfod D N, Ballentine C J, Halliday A N, Fitton J G. 1999. Noble gases in the Cameroon line and the He, Ne, and Ar isotopic compositions of high µ (HIMU) mantle. J Geophys Res, 104: 29509–29527

    Article  Google Scholar 

  • Bennett V C, Brandon A D, Nutman A P. 2007. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science, 318: 1907–1910

    Article  Google Scholar 

  • Bercovici D, Karato S I. 2003. Whole-mantle convection and the transitionzone water filter. Nature, 425: 39–44

    Article  Google Scholar 

  • Bézos A, Humler E. 2005. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta, 69: 711–725

    Article  Google Scholar 

  • Birch F. 1952. Elasticity and constitution of the Earth’s interior. J Geophys Res, 57: 227–286

    Article  Google Scholar 

  • Bizimis M, Sen G, Salters V J M, Keshav S. 2005. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: Evidence for a depleted component in Hawaiian volcanism. Geochim Cosmochim Acta, 69: 2629–2646

    Article  Google Scholar 

  • Bizimis M, Salters V J M, Garcia M O, Norman M D. 2013. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths. Geochem Geophys Geosyst, 14: 4458–4478

    Article  Google Scholar 

  • Blichert-Toft J, Frey F A, Albarède F. 1999. Hf isotope evidence for pelagic sediments in the source of Hawaiian Basalts. Science, 285: 879–882

    Article  Google Scholar 

  • Blichert-Toft J, White W M. 2001. Hf isotope geochemistry of the Galapagos Islands. Geochem Geophys Geosyst, 2: 1043–2000GC000138

  • Bouvier A, Boyet M. 2016. Primitive solar system materials and Earth share a common initial 142Nd abundance. Nature, 537: 399–402

    Article  Google Scholar 

  • Boyet M, Carlson R W. 2005. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science, 309: 576–581

    Article  Google Scholar 

  • Brandon A D, Humayun M, Puchtel I S, Leya I, Zolensky M. 2005. Osmium isotope evidence for an s-process carrier in primitive chondrites. Science, 309: 1233–1236

    Article  Google Scholar 

  • Brandon A D, Norman M D, Walker R J, Morgan J W. 1999. 186Os-187Os systematics of Hawaiian picrites. Earth Planet Sci Lett, 174: 25–42

    Article  Google Scholar 

  • Brandon A D, Walker R J. 2005. The debate over core-mantle interaction. Earth Planet Sci Lett, 232: 211–225

    Article  Google Scholar 

  • Brandon A D, Walker R J, Puchtel I S, Becker H, Humayun M, Revillon S. 2003. 186Os-187Os systematics of Gorgona Island komatiites: Implications for early growth of the inner core. Earth Planet Sci Lett, 206: 411–426

    Article  Google Scholar 

  • Burkhardt C, Borg L E, Brennecka G A, Shollenberger Q R, Dauphas N, Kleine T. 2016. A nucleosynthetic origin for the Earth’s anomalous 142Nd composition. Nature, 537: 394–398

    Article  Google Scholar 

  • Cabral R A, Jackson M G, Rose-Koga E F, Koga K T, Whitehouse M J, Antonelli M A, Farquhar J, Day J M D, Hauri E H. 2013. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature, 496: 490–493

    Article  Google Scholar 

  • Campbell I H, O’Neill H S C. 2012. Evidence against a chondritic Earth. Nature, 483: 553–558

    Article  Google Scholar 

  • Carlson R W, Boyet M, Horan M. 2007. Chondrite Barium, Neodymium, and Samarium Isotopic heterogeneity and early Earth differentiation. Science, 316: 1175–1178

    Article  Google Scholar 

  • Caro G, Bourdon B. 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: Consequences for the geochemical evolution of the mantle-crust system. Geochim Cosmochim Acta, 74: 3333–3349

    Article  Google Scholar 

  • Caro G, Bourdon B, Birck J L, Moorbath S. 2003. 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature, 423: 428–432

    Article  Google Scholar 

  • Caro G, Bourdon B, Birck J L, Moorbath S. 2006. High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the Earth’s mantle. Geochim Cosmochim Acta, 70: 164–191

    Article  Google Scholar 

  • Caro G, Bourdon B, Halliday A N, Quitté G. 2008. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature, 452: 336–339

    Article  Google Scholar 

  • Castillo P. 1988. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336: 667–670

    Article  Google Scholar 

  • Chauvel C, Hofmann A W, Vidal P. 1992. HIMU-EM: The French Polynesian connection. Earth Planet Sci Lett, 110: 99–119

    Article  Google Scholar 

  • Chauvel C, Hémond C. 2000. Melting of a complete section of recycled oceanic crust: Trace element and Pb isotopic evidence from Iceland. Geochem Geophys Geosyst, 1: 1001–1999GC000002

    Article  Google Scholar 

  • Chauvel C, Maury R C, Blais S, Lewin E, Guillou H, Guille G, Rossi P, Gutscher M A. 2012. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochem Geophys Geosyst, 13: Q07005

    Article  Google Scholar 

  • Chen H W, Lee T, Lee D C, Shen J J S, Chen J C. 2011. 48Ca heterogeneity in differentiated meteorites. Astrophys J, 743: L23

    Article  Google Scholar 

  • Cipriani A, Bonatti E, Carlson R W. 2011. Nonchondritic 142Nd in suboceanic mantle peridotites. Geochem Geophys Geosyst, 12: Q03006

    Article  Google Scholar 

  • Clayton R N. 2003. Oxygen isotopes in the Solar System. Space Sci Rev, 106: 19–32

    Article  Google Scholar 

  • Clayton R N, Mayeda T K, Olsen E J, Goswami J N. 1991. Oxygen isotope studies of ordinary chondrites. Geochim Cosmochim Acta, 55: 2317–2337

    Article  Google Scholar 

  • Clayton R N, Mayeda T K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochim Cosmochim Acta, 63: 2089–2104

    Article  Google Scholar 

  • Cooper K M, Eiler J M, Asimow P D, Langmuir C H. 2004. Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet Sci Lett, 220: 297–316

    Article  Google Scholar 

  • Cordier C, Chauvel C, Hémond C. 2016. High-precision lead isotopes and stripy plumes: Revisiting the Society chain in French Polynesia. Geochim Cosmochim Acta, 189: 236–250

    Article  Google Scholar 

  • Dalton C A, Langmuir C H, Gale A. 2014. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344: 80–83

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1–13

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, McDonough W F, Spiegelman M, Withers A C. 2009. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem Geol, 262: 57–77

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Stalker K. 2006. Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite+CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol, 47: 647–671

    Article  Google Scholar 

  • Dasgupta R, Jackson M G, Lee C T A. 2010. Major element chemistry of ocean island basalts—Conditions of mantle melting and heterogeneity of mantle source. Earth Planet Sci Lett, 289: 377–392

    Article  Google Scholar 

  • Dauphas N, Chen J H, Zhang J, Papanastassiou D A, Davis A M, Travaglio C. 2014. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet Sci Lett, 407: 96–108

    Article  Google Scholar 

  • Day J M D, Brandon A D, Walker R J. 2016. Highly siderophile elements in Earth, Mars, the Moon, and Asteroids. Rev Mineral Geochem, 81: 161–238

    Article  Google Scholar 

  • Debaille V, O’Neill C, Brandon A D, Haenecour P, Yin Q Z, Mattielli N, Treiman A H. 2013. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet Sci Lett, 373: 83–92

    Article  Google Scholar 

  • Delavault H, Chauvel C, Thomassot E, Devey C W, Dazas B. 2016. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc Natl Acad Sci USA, 113: 12952–12956

    Article  Google Scholar 

  • Donnelly K E, Goldstein S L, Langmuir C H, Spiegelman M. 2004. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett, 226: 347–366

    Article  Google Scholar 

  • Drake M J, Righter K. 2002. Determining the composition of the Earth. Nature, 416: 39–44

    Article  Google Scholar 

  • Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Phys Earth Planet Inter, 25: 297–356

    Article  Google Scholar 

  • Eggins S M. 1992. Petrogenesis of Hawaiian tholeiites: 1, Phase equilibria constraints. Contrib Mineral Petrol, 110: 387–397

    Article  Google Scholar 

  • Eiler J M. 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geo Chem, 43: 319–364

    Article  Google Scholar 

  • Eiler J M, Crawford A, Elliott T, Farley K A, Valley J W, Stolper E M. 2000. Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol, 41: 229–256

    Article  Google Scholar 

  • Eiler J M, Farley K A, Valley J W, Hauri E, Craig H, Hart S R, Stolper E M. 1997. Oxygen isotope variations in ocean island basalt phenocrysts. Geochim Cosmochim Acta, 61: 2281–2293

    Article  Google Scholar 

  • Eiler J M, Farley K A, Valley J W, Hofmann A W, Stolper E M. 1996. Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth Planet Sci Lett, 144: 453–467

    Article  Google Scholar 

  • Fantle M S, Tipper E T. 2014. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. Earth-Sci Rev, 129: 148–177

    Article  Google Scholar 

  • Farley K A, Natland J H, Craig H. 1992. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet Sci Lett, 111: 183–199

    Article  Google Scholar 

  • Farmer GL. 2003. Continental basaltic rocks. Treat Geochem, 3: 85–122

    Google Scholar 

  • Farnetani C G, Hofmann A W, Class C. 2012. How double volcanic chains sample geochemical anomalies from the lowermost mantle. Earth Planet Sci Lett, 359-360: 240–247

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289: 756–758

    Article  Google Scholar 

  • Farquhar J, Wing B A, Mc Keegan K D, Harris J W, Cartigny P, Thiemens M H. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science, 298: 2369–2372

    Article  Google Scholar 

  • Fischer R A, Nakajima Y, Campbell A J, Frost D J, Harries D, Langenhorst F, Miyajima N, Pollok K, Rubie D C. 2015. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim Cosmochim Acta, 167: 177–194

    Article  Google Scholar 

  • Fitton J G, Saunders A D, Norry M J, Hardarson B S, Taylor R N. 1997. Thermal and chemical structure of the Iceland plume. Earth Planet Sci Lett, 153: 197–208

    Article  Google Scholar 

  • Fitton J G, Saunders A D, Kempton P D, Hardarson B S. 2003. Does depleted mantle form an intrinsic part of the Iceland plume? Geochem Geophys Geosyst, 4: 1032

    Article  Google Scholar 

  • Foley B J. 2015. The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. Astrophys J, 812: 36

    Article  Google Scholar 

  • French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525: 95–99

    Article  Google Scholar 

  • Frey F A, Green D H. 1974. The mineralogy, geochemistry and origin of Iherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta, 38: 1023–1059

    Article  Google Scholar 

  • Frey F A, Huang S, Blichert-Toft J, Regelous M, Boyet M. 2005. Origin of depleted components in basalt related to the Hawaiian hot spot: Evidence from isotopic and incompatible element ratios. Geochem Geophys Geosyst, 6: Q02L07

    Article  Google Scholar 

  • Frey F A, Huang S, Xu G, Jochum K P. 2016. The geochemical components that distinguish Loa- and Kea-trend Hawaiian shield lavas. Geochim Cosmochim Acta, 185: 160–181

    Article  Google Scholar 

  • Frey F A, Nobre Silva I G, Huang S, Pringle M S, Meleney P R, Weis D. 2015. Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen). Earth Planet Sci Lett, 426: 293–304

    Article  Google Scholar 

  • Gale A, Dalton C A, Langmuir C H, Su Y, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochem Geophys Geosyst, 14: 489–518

    Article  Google Scholar 

  • Gannoun A, Boyet M, Rizo H, El Goresy A. 2011. 146Sm-142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. Proc Natl Acad Sci USA, 108: 7693–7697

    Article  Google Scholar 

  • Gast P W, Tilton G R, Hedge C. 1964. Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145: 1181–1185

    Article  Google Scholar 

  • Gonnermann H M, Mukhopadhyay S. 2009. Preserving noble gases in a convecting mantle. Nature, 459: 560–563

    Article  Google Scholar 

  • Gordon R G, Phipps Morgan J. 2016. Recent progress in understanding the origin of the Hawaiian-Emperor Bend. In: American Geophysical Union 2016 Fall Meeting, Abstract GP31D-05

    Google Scholar 

  • Green D H. 1970. A review of experimental evidence on the origin of basaltic and nephelinitic magmas. Phys Earth Planet Inter, 3: 221–235

    Article  Google Scholar 

  • Gregory R T, Taylor Jr. H P. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res, 86: 2737–2755

    Article  Google Scholar 

  • Guitreau M, Blichert-Toft J, Mojzsis S J, Roth A S G, Bourdon B. 2013. A legacy of Hadean silicate differentiation inferred from Hf isotopes in Eoarchean rocks of the Nuvvuagittuq supracrustal belt (Québec, Canada). Earth Planet Sci Lett, 362: 171–181

    Article  Google Scholar 

  • Hanan B B, Graham D W. 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272: 991–995

    Article  Google Scholar 

  • Hanyu T, Tatsumi Y, Senda R, Miyazaki T, Chang Q, Hirahara Y, Takahashi T, Kawabata H, Suzuki K, Kimura J I, Nakai S. 2011. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochem Geophys Geosyst, 12: Q0AC09

    Article  Google Scholar 

  • Harper C L, Jacobsen S B. 1992. Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature, 360: 728–732

    Article  Google Scholar 

  • Harpp K S, Hall P S, Jackson M G. 2014. Galápagos and Easter: A tale of two hotspots. In: Harpp K S, Mittelstaedt E, d’Ozouville E, Graham D W, eds. The Galápagos: A natural laboratory for the Earth Sciences. 27–40

    Google Scholar 

  • Hart S R. 1971. The geochemistry of basaltic rocks. Carnegie Institution of Washington Yearbook, 70: 353–355

    Google Scholar 

  • Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753–757

    Article  Google Scholar 

  • Hart S R, Hauri E H, Oschmann L A, Whitehead J A. 1992. Mantle plumes and entrainment: Isotopic evidence. Science, 256: 517–520

    Article  Google Scholar 

  • Hauri E H. 1996. Major-element variability in the Hawaiian mantle plume. Nature, 382: 415–419

    Article  Google Scholar 

  • Hauri E H, Hart S R. 1993. ReOs isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth Planet Sci Lett, 114: 353–371

    Article  Google Scholar 

  • Hawkesworth C J, Cawood P A, Dhuime B. 2016. Tectonics and crustal evolution. GSAT, 26: 4–11

    Article  Google Scholar 

  • He Y, Wen L, Capdeville Y, Zhao L. 2015. Seismic evidence for an Iceland thermo-chemical plume in the Earth’s lowermost mantle. Earth Planet Sci Lett, 417: 19–27

    Article  Google Scholar 

  • Herzberg C. 2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 444: 605–609

    Article  Google Scholar 

  • Herzberg C, Asimow P D, Ionov D A, Vidito C, Jackson M G, Geist D. 2013. Nickel and helium evidence for melt above the core-mantle boundary. Nature, 493: 393–397

    Article  Google Scholar 

  • Herzberg C, Cabral R A, Jackson M G, Vidito C, Day J M D, Hauri E H. 2014. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth Planet Sci Lett, 396: 97–106

    Article  Google Scholar 

  • Hilton D R, Fischer T P, Marty B. 2002. Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem, 47: 319–370

    Article  Google Scholar 

  • Hirose K, Takafuji N, Sata N, Ohishi Y. 2005. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett, 237: 239–251

    Article  Google Scholar 

  • Hirschmann M M, Kogiso T, Baker M B, Stolper E M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31: 481–484

    Article  Google Scholar 

  • Hirschmann M M, Stolper E M. 1996. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol, 124: 185–208

    Article  Google Scholar 

  • Hoernle K, Rohde J, Hauff F, Garbe-Schönberg D, Homrighausen S, Werner R, Morgan J P. 2015. How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot. Nat Commun, 6: 7799

    Article  Google Scholar 

  • Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314

    Article  Google Scholar 

  • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385: 219–229

    Article  Google Scholar 

  • Hofmann AW. 2014. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. Treatise Geochem, 3: 67–101

    Article  Google Scholar 

  • Hofmann A W, Feigenson M D, Raczek I. 1984. Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969–1971. Contrib Mineral Petrol, 88: 24–35

    Google Scholar 

  • Hofmann A W, Hart S R. 1978. An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet Sci Lett, 38: 44–62

    Article  Google Scholar 

  • Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet Sci Lett, 79: 33–45

    Article  Google Scholar 

  • Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 57: 421–436

    Article  Google Scholar 

  • Holland G, Ballentine C J. 2006. Seawater subduction controls the heavy noble gas composition of the mantle. Nature, 441: 186–191

    Article  Google Scholar 

  • Hopp J, Trieloff M. 2005. Refining the noble gas record of the Réunion mantle plume source: Implications on mantle geochemistry. Earth Planet Sci Lett, 240: 573–588

    Article  Google Scholar 

  • Huang S, Farkaš J, Jacobsen S B. 2011a. Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta, 75: 4987–4997

    Article  Google Scholar 

  • Huang S, Farkaš J, Yu G, Petaev M I, Jacobsen S B. 2012. Calcium isotopic ratios and rare earth element abundances in refractory inclusions from the Allende CV3 chondrite. Geochim Cosmochim Acta, 77: 252–265

    Article  Google Scholar 

  • Huang S, Frey F A. 2005. Recycled oceanic crust in the Hawaiian Plume: Evidence from temporal geochemical variations within the Koolau Shield. Contrib Mineral Petrol, 149: 556–575

    Article  Google Scholar 

  • Huang S, Humayun M. 2016. Petrogenesis of high-CaO lavas from Mauna Kea, Hawaii: Constraints from trace element abundances. Geochim Cosmochim Acta, 185: 198–215

    Article  Google Scholar 

  • Huang S, Humayun M, Frey F A. 2007. Iron/manganese ratio and manganese content in shield lavas from Ko’olau Volcano, Hawai’i. Geochim Cosmochim Acta, 71: 4557–4569

    Article  Google Scholar 

  • Huang S, Hall P S, Jackson M G. 2011b. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nat Geosci, 4: 874–878

    Article  Google Scholar 

  • Huang S, Jacobsen S B, Mukhopadhyay S. 2013. 147Sm-143Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio. Proc Natl Acad Sci USA, 110: 4929–4934

    Article  Google Scholar 

  • Huang S, Lee C T A, Yin Q Z. 2014. Missing lead and high 3He/4He in ancient sulfides associated with continental crust formation. Sci Rep, 4: 5314

    Article  Google Scholar 

  • Huang S, Jacobsen S B. 2017. Calcium isotopic compositions of chondrites. Geochim Cosmochim Acta, 201: 364–376

    Article  Google Scholar 

  • Humayun M, Qin L, Norman M D. 2004. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science, 306: 91–94

    Article  Google Scholar 

  • Hyung E, Huang S, Petaev M I, Jacobsen S B. 2016. Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth Planet Sci Lett, 440: 158–168

    Article  Google Scholar 

  • Hyung E, Jacobsen S B. 2016. 142Nd/144Nd heterogeneity in the proterozoic to phanerozoic mantle and implications for mantle mixing. In: AGU 2016 Fall Meeting DI13B-03

    Google Scholar 

  • Ireland T J, Walker R J, Brandon A D. 2011. 186Os-187Os systematics of Hawaiian picrites revisited: New insights into Os isotopic variations in ocean island basalts. Geochim Cosmochim Acta, 75: 4456–4475

    Article  Google Scholar 

  • Jackson M G, Carlson R W. 2011. An ancient recipe for flood-basalt genesis. Nature, 476: 316–319

    Article  Google Scholar 

  • Jackson M G, Carlson R W. 2012. Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem Geophys Geosyst, 13: Q06011

    Google Scholar 

  • Jackson M G, Carlson R W, Kurz M D, Kempton P D, Francis D, Blusztajn J. 2010. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature, 466: 853–856

    Article  Google Scholar 

  • Jackson M G, Dasgupta R. 2008. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett, 276: 175–186

    Article  Google Scholar 

  • Jackson M G, Hart S R, Konter J G, Kurz M D, Blusztajn J, Farley K A. 2014. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature, 514: 355–358

    Article  Google Scholar 

  • Jackson M G, Hart S R, Koppers A A P, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell J A. 2007. The return of subducted continental crust in Samoan lavas. Nature, 448: 684–687

    Article  Google Scholar 

  • Jackson M G, Hart S R, Saal A E, Shimizu N, Kurz M D, Blusztajn J S, Skovgaard A C. 2008. Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He. Geochem Geophys Geosyst, 9: Q04027

    Article  Google Scholar 

  • Jackson M G, Jellinek A M. 2013. Major and trace element composition of the high 3He/4He mantle: Implications for the composition of a nonchonditic Earth. Geochem Geophys Geosyst, 14: 2954–2976

    Article  Google Scholar 

  • Jackson M G, Konter J G, Becker T W. 2017. Primordial helium entrained by the hottest mantle plumes. Nature, 542: 340–343

    Article  Google Scholar 

  • Jackson M G, Weis D, Huang S. 2012. Major element variations in Hawaiian shield lavas: Source features and perspectives from global ocean island basalt (OIB) systematics. Geochem Geophys Geosyst, 13: Q09009

    Google Scholar 

  • Jackson C R M, Parman S W, Kelley S P, Cooper R F. 2013. Noble gas transport into the mantle facilitated by high solubility in amphibole. Nat Geosci, 6: 562–565

    Article  Google Scholar 

  • Jacobsen S B. 1988. Isotopic constraints on crustal growth and recycling. Earth Planet Sci Lett, 90: 315–329

    Article  Google Scholar 

  • Jacobsen S B, Harper C L. 1996. Accretion and early differentiation history of the Earth based on extinct radionuclides. Geophys Monograph, 95: 47–74

    Google Scholar 

  • Jacobsen S B, Wasserburg G J. 1980. Sm-Nd isotopic evolution of chondrites. Earth Planet Sci Lett, 50: 139–155

    Article  Google Scholar 

  • Jacobsen S B, Wasserburg G J. 1984. Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth Planet Sci Lett, 67: 137–150

    Article  Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V. 1979. The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. In: Proceedings of Lunar and Planetary Science Conference, 10. 2031–2050

    Google Scholar 

  • Jarrard R D. 2003. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst, 4: 8905–8954

    Article  Google Scholar 

  • Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C. 2010. The chemical composition of the Earth: Enstatite chondrite models. Earth Planet Sci Lett, 293: 259–268

    Article  Google Scholar 

  • Jellinek A M, Jackson M G. 2015. Connections between the bulk composition, geodynamics and habitability of Earth. Nat Geosci, 8: 587–593

    Article  Google Scholar 

  • Jones T D, Davies D R, Campbell I H, Wilson C R, Kramer S C. 2016. Do mantle plumes preserve the heterogeneous structure of their deep-mantle source? Earth Planet Sci Lett, 434: 10–17

    Article  Google Scholar 

  • Jungck M H A, Shimamura T, Lugmair G W. 1984. Ca isotope variations in Allende. Geochim Cosmochim Acta, 48: 2651–2658

    Article  Google Scholar 

  • Kelemen P B. 1986. Assimilation of ultramafic rock in subduction-related magmatic arcs. J Geol, 94: 829–843

    Article  Google Scholar 

  • Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325: 605–607

    Article  Google Scholar 

  • Kelley D S, Baross J A, Delaney J R. 2002. Volcanoes, fluids, and life at midocean ridge spreading centers. Annu Rev Earth Planet Sci, 30: 385–491

    Article  Google Scholar 

  • Keshav S, Gudfinnsson G H, Sen G, Fei Y. 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet Sci Lett, 223: 365–379

    Article  Google Scholar 

  • Kinoshita N, Paul M, Kashiv Y, Collon P, Deibel C M, Di Giovine B, Greene J P, Henderson D J, Jiang C L, Marley S T, Nakanishi T, Pardo R C, Rehm K E, Robertson D, Scott R, Schmitt C, Tang X D, Vondrasek R, Yokoyama A. 2012. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the Solar System. Science, 335: 1614–1617

    Article  Google Scholar 

  • Kleine T, Münker C, Mezger K, Palme H. 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature, 418: 952–955

    Article  Google Scholar 

  • Kogiso T, Hirschmann M M. 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett, 249: 188–199

    Article  Google Scholar 

  • Kogiso T, Hirschmann M M, Frost D J. 2003. High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett, 216: 603–617

    Article  Google Scholar 

  • Kogiso T, Hirschmann M M, Pertermann M. 2005. High-pressure partial melting of mafic lithologies in the mantle. J Petrol, 45: 2407–2422

    Article  Google Scholar 

  • Korenaga J. 2012. Plate tectonics and planetary habitability: Current status and future challenges. Ann New York Acad Sci, 1260: 87–94

    Article  Google Scholar 

  • Kunz J, Staudacher T, Allegre C J. 1998. Plutonium-fission xenon found in Earth’s mantle. Science, 280: 877–880

    Article  Google Scholar 

  • Kurz M D, Jenkins W J, Hart S R. 1982. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Naure, 297: 43–47

    Google Scholar 

  • Kushiro I. 2001. Partial melting experiments on peridotite and origin of midocean ridge basalt. Annu Rev Earth Planet Sci, 29: 71–107

    Article  Google Scholar 

  • Lambart S, Baker M B, Stolper E M. 2016. The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J Geophys Res-Solid Earth, 121: 5708–5735

    Article  Google Scholar 

  • Lambart S, Laporte D, Schiano P. 2009. An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: Implications for the major-element composition of Mid-Ocean Ridge Basalts. Earth Planet Sci Lett, 288: 335–347

    Article  Google Scholar 

  • Lassiter J C, Hauri E H. 1998. Osmium-isotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Lett, 164: 483–496

    Article  Google Scholar 

  • Lee C T A. 2014. Physics and chemistry of deep continental crust recycling. Treat Geochem, 4: 423–456

    Article  Google Scholar 

  • Lee C T A, Luffi P, Höink T, Li J, Dasgupta R, Hernlund J. 2010. Upside- down differentiation and generation of a ‘primordial’ lower mantle. Nature, 463: 930–933

    Article  Google Scholar 

  • Lee T, Papanastassiou D A, Wasserburg G J. 1976. Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys Res Lett, 3: 109–112

    Article  Google Scholar 

  • Lee T, Papanastassiou D A, Wasserburg G J. 1978. Calcium isotopic anomalies in the Allende meteorite. Astrophys J, 220: L21–L25

    Article  Google Scholar 

  • Longhi J. 2002. Some phase equilibrium systematics of lherzolite melting: I. Geochem-Geophys-Geosyst, 3: 1–33

    Article  Google Scholar 

  • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophys J, 591: 1220–1247

    Article  Google Scholar 

  • Luguet A, Graham Pearson D, Nowell G M, Dreher S T, Coggon J A, Spetsius Z V, Parman S W. 2008. Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science, 319: 453–456

    Article  Google Scholar 

  • Mansur A T, Manya S, Timpa S, Rudnick R L. 2014. Granulite-facies xenoliths in rift basalts of northern Tanzania: Age, composition and origin of archean lower crust. J Petrol, 55: 1243–1286

    Article  Google Scholar 

  • Matzen A K, Baker M B, Beckett J R, Stolper E M. 2013. The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. J Petrol, 54: 2521–2545

    Article  Google Scholar 

  • McDonough W F, Sun S. 1995. The composition of the Earth. Chem Geol, 120: 223–253

    Article  Google Scholar 

  • McKenzie D. 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett, 95: 53–72

    Article  Google Scholar 

  • McKenzie D, O’Nions R K. 1983. Mantle reservoirs and ocean island basalts. Nature, 301: 229–231

    Article  Google Scholar 

  • Meissner F, Schmidt-Ott W D, Ziegeler L. 1987. Half-life and a-ray energy of 146Sm. Z Physik A-Atomic Nuclei, 327: 171–174

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen F A, Masters G. 2006. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem Geophys Geosyst, 7: Q11007

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen F A, Masters G, Engdahl E R, Hung S H. 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303: 338–343

    Article  Google Scholar 

  • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43

    Article  Google Scholar 

  • Muehlenbachs K, Clayton R N. 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J Geophys Res, 81: 4365–4369

    Article  Google Scholar 

  • Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486: 101–104

    Article  Google Scholar 

  • Mundl A, Touboul M, Jackson M G, Day J M D, Kurz M D, Lekic V, Helz R T, Walker R J. 2017. Tungsten-182 heterogeneity in modern ocean island basalts. Science, 356: 66–69

    Article  Google Scholar 

  • Murakami M, Ohishi Y, Hirao N, Hirose K. 2012. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485: 90–94

    Article  Google Scholar 

  • Murphy D T, Brandon A D, Debaille V, Burgess R, Ballentine C. 2010. In search of a hidden long-term isolated sub-chondritic 142Nd/144Nd reservoir in the deep mantle: Implications for the Nd isotope systematics of the Earth. Geochim Cosmochim Acta, 74: 738–750

    Article  Google Scholar 

  • Newton J, Franchi I A, Pillinger C T. 2000. The oxygen-isotopic record in enstatite meteorites. Meteoritics Planet Sci, 35: 689–698

    Article  Google Scholar 

  • Ni S, Helmberger D V. 2003. Seismological constraints on the South African superplume; could be the oldest distinct structure on earth. Earth Planet Sci Lett, 206: 119–131

    Article  Google Scholar 

  • Niederer F R, Papanastassiou D A. 1984. Ca isotopes in refractory inclusions. Geochim Cosmochim Acta, 48: 1279–1293

    Article  Google Scholar 

  • Niederer F R, Papanastassiou D A, Wasserburg G J. 1985. Absolute isotopic abundances of Ti in meteorites. Geochim Cosmochim Acta, 49: 835–851

    Article  Google Scholar 

  • Nittler L R, Mc Coy T J, Clark P E, Murphy M E, Trombka J I, Jarosewich E. 2004. Bulk element compositions of meteorites: A guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarctic Meteorite Res, 17: 233–253

    Google Scholar 

  • Niu Y, O’Hara M J. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res, 108: 2209

    Google Scholar 

  • O’Neil J, Carlson R W, Francis D, Stevenson R K. 2008. Neodymium-142 evidence for Hadean mafic crust. Science, 321: 1828–1831

    Article  Google Scholar 

  • O’Neil J, Carlson R W, Paquette J L, Francis D. 2012. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res, 220-221: 23–44

    Article  Google Scholar 

  • O’Reilly S Y, Griffin W L. 2013. Mantle metasomatism. In: Harlow DE, Austrheim H, eds. Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes. New York: Springer. 471–534

    Chapter  Google Scholar 

  • Palme H, Lodders K, Jones A. 2014. Solar System abundances of the elements. In: Davis A M, ed. Ch. 2.2 in Treaties on Geochemistry, 2nd ed. Amsterdam: Elsevier

    Google Scholar 

  • Palme H, O’Neill H St C. 2014. Cosmochemical estimates of mantle composition. In: Davis A M, ed. Ch. 3.1 in Treaties on Geochemistry, 2nd ed. Amsterdam: Elsevier

    Google Scholar 

  • Parai R, Mukhopadhyay S, Lassiter J C. 2009. New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook-Austral Islands. Earth Planet Sci Lett, 277: 253–261

    Article  Google Scholar 

  • Parai R, Mukhopadhyay S, Standish J J. 2012. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet Sci Lett, 359-360: 227–239

    Article  Google Scholar 

  • Parman S W, Kurz M D, Hart S R, Grove T L. 2005. Helium solubility in olivine and implications for high 3He/4He in ocean island basalts. Nature, 437: 1140–1143

    Article  Google Scholar 

  • Patterson C. 1956. Age of meteorites and the earth. Geochim Cosmochim Acta, 10: 230–237

    Article  Google Scholar 

  • Payne J A, Jackson M G, Hall P S. 2013. Parallel volcano trends and geochemical asymmetry of the Society Islands hotspot track. Geology, 41: 19–22

    Article  Google Scholar 

  • Pertermann M, Hirschmann M M. 2003. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res, 108: 2125

    Article  Google Scholar 

  • Peto M K, Mukhopadhyay S, Kelley K A. 2013. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet Sci Lett, 369-370: 13–23

    Article  Google Scholar 

  • Phipps Morgan J. 2000. Isotope topology of individual hotspot basalt arrays: Mixing curves or melt extraction trajectories? Geochem Geophys Geosyst, 1: 1003

    Article  Google Scholar 

  • Pietruszka A J, Norman M D, Garcia M O, Marske J P, Burns D H. 2013. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust. Earth Planet Sci Lett, 361: 298–309

    Article  Google Scholar 

  • Poreda R J, Farley K A. 1992. Rare gases in Samoan xenoliths. Earth Planet Sci Lett, 113: 129–144

    Article  Google Scholar 

  • Prytulak J, Elliott T. 2007. TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett, 263: 388–403

    Article  Google Scholar 

  • Putirka K, Ryerson F J, Perfit M, Ridley W I. 2011. Mineralogy and composition of the oceanic mantle. J Petrol, 52: 279–313

    Article  Google Scholar 

  • Qin L, Humayun M. 2008. The Fe/Mn ratio in MORB and OIB determined by ICP-MS. Geochim Cosmochim Acta, 72: 1660–1677

    Article  Google Scholar 

  • Ranen M C, Jacobsen S B. 2006. Barium isotopes in chondritic meteorites: Implications for planetary reservoir models. Science, 314: 809–812

    Article  Google Scholar 

  • Regelous M, Hofmann A W, Abouchami A, Galer S J G. 2003. Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. J Petrol, 44: 113–140

    Article  Google Scholar 

  • Rhodes J M, Huang S, Frey F A, Pringle M, Xu G. 2012. Compositional diversity of Mauna Kea shield lavas recovered by the Hawaii Scientific Drilling Project: Inferences on source lithology, magma supply, and the role of multiple volcanoes. Geochem Geophys Geosyst, 13: Q03014

    Article  Google Scholar 

  • Rhodes J M, Vollinger M J. 2005. Ferric/ferrous ratios in 1984 Mauna Loa lavas: A contribution to understanding the oxidation state of Hawaiian magmas. Contrib Mineral Petrol, 149: 666–674

    Article  Google Scholar 

  • Ringwood A E. 1990. Slab-mantle interactions. ChemGeol, 82: 187–207

    Google Scholar 

  • Rizo H, Boyet M, Blichert-Toft J, Rosing M. 2011. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet Sci Lett, 312: 267–279

    Article  Google Scholar 

  • Rizo H, Boyet M, Blichert-Toft J, O’Neil J, Rosing M T, Paquette J L. 2012. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature, 491: 96–100

    Article  Google Scholar 

  • Rizo H, Walker R J, Carlson R W, Horan M F, Mukhopadhyay S, Manthos V, Francis D, Jackson M G. 2016a. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science, 352: 809–812

    Article  Google Scholar 

  • Rizo H, Walker R J, Carlson R W, Touboul M, Horan M F, Puchtel I S, Boyet M, Rosing M T. 2016b. Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland. Geochim Cosmochim Acta, 175: 319–336

    Article  Google Scholar 

  • Rohde J, Hoernle K, Hauff F, Werner R, O’Connor J, Class C, Garbe-Schonberg D, Jokat W. 2013. 70 Ma chemical zonation of the Tristan-Gough hotspot track. Geology, 41: 335–338

    Article  Google Scholar 

  • Roth A S G, Bourdon B, Mojzsis S J, Touboul M, Sprung P, Guitreau M, Blichert-Toft J. 2013. Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet Sci Lett, 361: 50–57

    Article  Google Scholar 

  • Roth A S G, Bourdon B, Mojzsis S J, Rudge J F, Guitreau M, Blichert-Toft J. 2014a. Combined 147,146Sm-143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem Geophys Geosyst, 15: 2329–2345

    Article  Google Scholar 

  • Roth A S G, Scherer E E, Maden C, Mezger K, Bourdon B. 2014b. Revisiting the 142Nd deficits in the 1.48 Ga Khariar alkaline rocks, India. Chem Geol, 386: 238–248

    Article  Google Scholar 

  • Rudnick R L, Gao S. 2003. The composition of the continental crust. Treat Geochem, 3: 1–64

    Google Scholar 

  • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosyst, 5: Q05004

    Article  Google Scholar 

  • Salters V J M, Mallick S, Hart S R, Langmuir C E, Stracke A. 2011. Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochem Geophys Geosyst, 12: Q08001

    Google Scholar 

  • Scherstén A, Elliott T, Hawkesworth C, Norman M. 2004. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth’s core. Nature, 427: 234–237

    Article  Google Scholar 

  • Schmandt B, Jacobsen S D, Becker T W, Liu Z, Dueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344: 1265–1268

    Article  Google Scholar 

  • Seager S. 2013. Exoplanet habitability. Science, 340: 577–581

    Article  Google Scholar 

  • Simon J I, De Paolo D J, Moynier F. 2009. Calcium isotope composition of meteorites, earth, and mars. Astrophys J, 702: 707–715

    Article  Google Scholar 

  • Sleep N H. 1990. Hotspots and mantle plumes: Some phenomenology. J Geophys Res, 95: 6715–6736

    Article  Google Scholar 

  • Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivinefree mantle source of Hawaiian shield basalts. Nature, 434: 590–597

    Article  Google Scholar 

  • Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316: 412–417

    Article  Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

    Article  Google Scholar 

  • Stolper E, Sherman S, Garcia M, Baker M, Seaman C. 2004. Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem Geophys Geosyst, 5: Q07G15

    Article  Google Scholar 

  • Stracke A. 2012. Earth’s heterogeneous mantle: A product of convection- driven interaction between crust and mantle. Chem Geol, 330-331: 274–299

    Article  Google Scholar 

  • Stracke A, Bourdon B. 2009. The importance of melt extraction for tracing mantle heterogeneity. Geochim Cosmochim Acta, 73: 218–238

    Article  Google Scholar 

  • Stracke A, Hofmann A W, Hart S R. 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst, 6: Q05007, doi:10.1029/2004GC000824

    Article  Google Scholar 

  • Stuart F M, Lass-Evans S, Godfrey Fitton J, Ellam R M. 2003. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature, 424: 57–59

    Article  Google Scholar 

  • Sun S S. 1982. Chemical composition and origin of the Earth’s primitive mantle. Geochim Cosmochim Acta, 46: 179–192

    Article  Google Scholar 

  • Sun W, Hu Y, Kamenetsky V S, Eggins S M, Chen M, Arculus R J. 2008. Constancy of Nb/U in the mantle revisited. Geochim Cosmochim Acta, 72: 3542–3549

    Article  Google Scholar 

  • Sun W, Ding X, Hu Y, Zartman R E, Arculus R J, Kamenetsky V S, Chen M. 2011. The fate of subducted oceanic crust: A mineral segregation model. Int Geol Rev, 53: 879–893

    Article  Google Scholar 

  • Tang M, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351: 372–375

    Article  Google Scholar 

  • Tarduno J A, Duncan R A, Scholl D W, Cottrell R D, Steinberger B, Thordarson T, Kerr B C, Neal C R, Frey F A, Torii M, Carvallo C. 2003. The emperor seamounts: Southward motion of the hawaiian hotspot plume in Earth’s mantle. Science, 301: 1064–1069

    Article  Google Scholar 

  • Touboul M, Liu J, O’Neil J, Puchtel I S, Walker R J. 2014. New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chem Geol, 383: 63–75

    Article  Google Scholar 

  • Touboul M, Puchtel I S, Walker R J. 2012. 182W evidence for long-term preservation of early mantle differentiation products. Science, 335: 1065–1069

    Article  Google Scholar 

  • Trieloff M, Kunz J, Clague D A, Harrison D, Allègre C J. 2000. The nature of pristine noble gases in mantle plumes. Science, 288: 1036–1038

    Article  Google Scholar 

  • Tucker J M, Mukhopadhyay S, Schilling J G. 2012. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet Sci Lett, 355-356: 244–254

    Article  Google Scholar 

  • Tucker J M, Mukhopadhyay S. 2014. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet Sci Lett, 393: 254–265

    Article  Google Scholar 

  • Upadhyay D, Scherer E E, Mezger K. 2009. 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature, 459: 1118–1121

    Article  Google Scholar 

  • van der Hilst R D, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386: 578–584

    Article  Google Scholar 

  • Van Orman J A, Grove T L, Shimizu N. 2002. Diffusive fractionation of trace elements during production and transport of melt in Earth’s upper mantle. Earth Planet Sci Lett, 198: 93–112

    Article  Google Scholar 

  • Van Orman J A, Keshav S, Fei Y. 2008. High-pressure solid/liquid partitioning of Os, Re and Pt in the Fe-S system. Earth Planet Sci Lett, 274: 250–257

    Article  Google Scholar 

  • Vervoort J D, Patchett P J, Blichert-Toft J, Albarède F. 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett, 168: 79–99

    Article  Google Scholar 

  • Vervoort J D, Plank T, Prytulak J. 2011. The Hf-Nd isotopic composition of marine sediments. Geochim Cosmochim Acta, 75: 5903–5926

    Article  Google Scholar 

  • Wagner T P, Grove T L. 1998. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib Mineral Petrol, 131: 1–12

    Article  Google Scholar 

  • Walker R J, Morgan J W, Horan M F. 1995. Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction? Science, 269: 819–822

    Article  Google Scholar 

  • Weaver B L. 1991. The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet Sci Lett, 104: 381–397

    Article  Google Scholar 

  • Weis D, Garcia M O, Rhodes J M, Jellinek M, Scoates J S. 2011. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat Geosci, 4: 831–838

    Article  Google Scholar 

  • Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537: 666–670

    Article  Google Scholar 

  • White W M. 2015. Isotopes, DUPAL, LLSVPs, and anekantavada. Chem Geol, 419: 10–28

    Article  Google Scholar 

  • Willbold M, Elliott T, Moorbath S. 2011. The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature, 477: 195–198

    Article  Google Scholar 

  • Willbold M, Mojzsis S J, Chen H W, Elliott T. 2015. Tungsten isotope composition of the Acasta gneiss complex. Earth Planet Sci Lett, 419: 168–177

    Article  Google Scholar 

  • Wilson J T. 1963. Evidence from islands on the spreading of ocean floors. Nature, 197: 536–538

    Article  Google Scholar 

  • Workman R K, Eiler J M, Hart S R, Jackson M G. 2008. Oxygen isotopes in Samoan lavas: Confirmation of continent recycling. Geology, 36: 551–554

    Article  Google Scholar 

  • Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72

    Article  Google Scholar 

  • Workman R K, Hart S R, Jackson M, Regelous M, Farley K A, Blusztajn J, Kurz M, Staudigel H. 2004. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochem Geophys Geosyst, 5: Q04008

    Article  Google Scholar 

  • Wörner G, Zindler A, Staudigel H, Schmincke H U. 1986. Sr, Nd, and Pb isotope geochemistry of Tertiary and Quaternary alkaline volcanics from West Germany. Earth Planet Sci Lett, 79: 107–119

    Article  Google Scholar 

  • Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. J Asian Earth Sci, 145: 233–259

    Article  Google Scholar 

  • Xu Z, Zheng Y F, Zhao Z F. 2017. The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos, 268-271: 302–319

    Article  Google Scholar 

  • Yin Q, Jacobsen S B, Yamashita K, Blichert-Toft J, Télouk P, Albarède F. 2002. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418: 949–952

    Article  Google Scholar 

  • Zeng L, Sasselov D D, Jacobsen S B. 2016. Mass-radius relation for rocky planets based on PREM. Astrophys J, 819: 127

    Article  Google Scholar 

  • Zhang J, Dauphas N, Davis A M, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nat Geosci, 5: 251–255

    Article  Google Scholar 

  • Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326

    Article  Google Scholar 

  • Zhang Y. 2014. Quantification of the elemental incompatibility sequence, and composition of the “superchondritic” mantle. Chem Geol, 369: 12–21

    Article  Google Scholar 

  • Zhang Z, Stixrude L, Brodholt J. 2013. Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth. Earth Planet Sci Lett, 379: 1–12

    Article  Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Article  Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Nat Sci Rev, 3: 651–682

    Google Scholar 

  • Zheng Y F, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci Rev, 62: 105–161

    Article  Google Scholar 

  • Zindler A, Jagoutz E, Goldstein S. 1982. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective. Nature, 298: 519–523

    Article  Google Scholar 

  • Zindler A, Hart S. 1986. Chemical geodynamics. Annu Rev Earth Planet Sci, 14: 493–571

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (Grant No. NSF EAR-1524387) and National Natural Science Foundation of China (Grant No. 41590620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiChun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zheng, Y. Mantle geochemistry: Insights from ocean island basalts. Sci. China Earth Sci. 60, 1976–2000 (2017). https://doi.org/10.1007/s11430-017-9090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9090-4

Keywords

Navigation