Science China Earth Sciences

, Volume 60, Issue 11, pp 2001–2012 | Cite as

The predictability of atmospheric and oceanic motions: Retrospect and prospects

  • Mu Mu
  • WanSuo Duan
  • YouMin Tang


This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit (IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed. The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.


Atmosphere-ocean Predictability Intrinsic predictability limit Ensemble forecast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors sincerely thank Meng Zhiyong, Yang Haijun, Ding Ruiqiang, Wu Bo, Wang Qiang, Zhou Feifan, Sun Guodong, Jiang Zhina, Feng Rong and Wu Yujie for their help. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41230420, 41376018 & 41606012).


  1. Annamalai H, Murtugudde R. 2004. Role of the Indian Ocean in regional climate variability. Earth Clim, 147: 213–246Google Scholar
  2. Ansell T, Reason C J C, Meyers G. 2000. Variability in the tropical southeast Indian Ocean and links with southeast Australian winter rainfall. Geophys Res Lett, 27: 3977–3980CrossRefGoogle Scholar
  3. Ashok K, Guan Z, Yamagata T. 2001. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett, 28: 4499–4502CrossRefGoogle Scholar
  4. Bastidas L A, Hogue T S, Sorooshian S, Gupta H V, Shuttleworth W J. 2006. Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. J Geophys Res, 111: D20101CrossRefGoogle Scholar
  5. Behera S K, Luo J J, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T. 2005. Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J Clim, 18: 4514–4530CrossRefGoogle Scholar
  6. Bei N, Zhang F. 2007. Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Q J R Meteorol Soc, 133: 83–99CrossRefGoogle Scholar
  7. Cane M A. 1983. Oceanographic events during El Niño. Science, 222: 1189–1195CrossRefGoogle Scholar
  8. Chan J C L, Ai W, Xu J. 2002. Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon. J Meteorol Soc Jpn, 80: 1103–1113CrossRefGoogle Scholar
  9. Chelton D B, Gaube P, Schlax M G, Early J J, Samelson R M. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334: 328–332CrossRefGoogle Scholar
  10. Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Prog Oceanogr, 91: 167–216CrossRefGoogle Scholar
  11. Chelton D B, Schlax M G, Samelson R M, de Szoeke R A. 2007. Global observations of large oceanic eddies. Geophys Res Lett, 34: L15606CrossRefGoogle Scholar
  12. Chen D, Cane M A, Kaplan A, Zebiak S E, Huang D J. 2004. Predictability of El Niño over the past 148 years. Nature, 428: 733–736CrossRefGoogle Scholar
  13. Chikamoto Y, Kimoto M, Ishii M, Mochizuki T, Sakamoto T T, Tatebe H, Komuro Y, Watanabe M, Nozawa T, Shiogama H, Mori M, Yasunaka S, Imada Y. 2013. An overview of decadal climate predictability in a multimodel ensemble by climate model MIROC. Clim Dyn, 40: 1201–1222CrossRefGoogle Scholar
  14. Chikamoto Y, Kimoto M, Ishii M, Watanabe M, Nozawa T, Mochizuki T, Tatebe H, Sakamoto T T, Komuro Y, Shiogama H, Mori M, Yasunaka S, Imada Y, Koyama H, Nozu M, Jin F. 2012. Predictability of a stepwise shift in Pacific climate during the late 1990s in hindcast experiments using MIROC. J Meteorol Soc Jpn, 90A: 1–21CrossRefGoogle Scholar
  15. Chylek P, Folland C K, Lesins G, Dubey M K. 2010. Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys Res Lett, 37: L08703CrossRefGoogle Scholar
  16. Chylek P, Klett J D, Lesins G, Dubey M K, Hengartner N. 2014. The Atlantic multidecadal oscillation as a dominant factor of oceanic influence on climate. Geophys Res Lett, 41: 1689–1697CrossRefGoogle Scholar
  17. Davini P, D’Andrea F. 2016. Northern hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J Clim, 29: 8823–8840CrossRefGoogle Scholar
  18. Demaria E M, Nijssen B, Wagener T. 2007. Monte Carlo sensitivity analysis of land surface parameters using the variable infiltration capacity model. J Geophys Res, 112: D11113CrossRefGoogle Scholar
  19. Ding R Q, Li J P, Seo K H. 2010. Predictability of the Madden-Julian oscillation estimated using observational data. Mon Weather Rev, 138: 1004–1013CrossRefGoogle Scholar
  20. Ding R Q, Li J P, Seo K H. 2011. Estimate of the predictability of boreal Summer and Winter intraseasonal oscillations from observations. Mon Weather Rev, 139: 2421–2438CrossRefGoogle Scholar
  21. Ding R Q, Li J P, Zheng F, Feng J, Liu D Q. 2015. Estimating the limit of decadal-scale climate predictability using observational data. Clim Dyn, 46: 1563–1580CrossRefGoogle Scholar
  22. Dole R M, Gordon N D. 1983. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon Weather Rev, 111: 1567–1586CrossRefGoogle Scholar
  23. Duan W S, Wu Y J. 2015. Season-dependent predictability and error growth dynamics of Pacific Decadal Oscillation-related sea surface temperature anomalies. Clim Dyn, 44: 1053–1072CrossRefGoogle Scholar
  24. Duan W S, Zhao P. 2015. Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Clim Dyn, 44: 2351–2367CrossRefGoogle Scholar
  25. Duan W S, Zhou F F. 2013. Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus Ser A-Dyn Meteorol Oceanol, 65: 18452CrossRefGoogle Scholar
  26. Enfield D B, Mestas-Nuñez A M, Trimble P J. 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett, 28: 2077–2080CrossRefGoogle Scholar
  27. Feng R, Duan W S, Mu M. 2014a. The “winter predictability barrier” for IOD events and its error growth dynamics: Results from a fully coupled GCM. J Geophys Res-Oceans, 119: 8688–8708CrossRefGoogle Scholar
  28. Feng R, Mu M, Duan W S. 2014b. Study on the “winter persistence barrier” of Indian Ocean dipole events using observation data and CMIP5 model outputs. Theor Appl Climatol, 118: 523–534CrossRefGoogle Scholar
  29. Frankcombe L M, von der Heydt A, Dijkstra H A. 2010. North Atlantic multidecadal climate variability: An investigation of dominant time scales and processes. J Clim, 23: 3626–3638CrossRefGoogle Scholar
  30. Fuglister F C. 1972. Cyclonic rings formed by the Gulf Stream 1965–1966. In: Gordon A, ed. Studies in Physical Oceanography. New York: Gordon and Breach. 137–168Google Scholar
  31. Fyfe J C, Merryfield W J, Kharin V, Boer G J, Lee W S, von Salzen K. 2011. Skillful predictions of decadal trends in global mean surface temperature. Geophys Res Lett, 38: L22801CrossRefGoogle Scholar
  32. Guan Z, Yamagata T. 2003. The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys Res Lett, 30: 1544CrossRefGoogle Scholar
  33. Ham Y G, Sung M K, An S I, Schubert S D, Kug J S. 2014. Role of tropical atlantic SST variability as a modulator of El Niño teleconnections. J Atmos Sci, 50: 247–261Google Scholar
  34. Hendon H H, Lim E, Wang G, Alves O, Hudson D. 2009. Prospects for predicting two flavors of El Niño. Geophys Res Lett, 36: L19713CrossRefGoogle Scholar
  35. Hendon H H, Wheeler M C, Zhang C. 2007. Seasonal dependence of the MJO-ENSO relationship. J Clim, 20: 531–543CrossRefGoogle Scholar
  36. Higgins R W, Shi W. 2001. Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J Clim, 14: 403–417CrossRefGoogle Scholar
  37. Hu J Y, Duan W S. 2016. Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: Implications to target observations for ENSO prediction. J Geophys Res-Oceans, 121: 2901–2917CrossRefGoogle Scholar
  38. Hudson D, Marshall A G, Yin Y H, Alves O, Hendon H H. 2013. Improving intraseasonal prediction with a new ensemble generation strategy. Mon Weather Rev, 141: 4429–4449CrossRefGoogle Scholar
  39. Jeong H I, Lee D Y, Ashok K, Ahn J B, Lee J Y, Luo J J, Schemm J K E, Hendon H H, Braganza K, Ham Y G. 2012. Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Clim Dyn, 39: 475–493CrossRefGoogle Scholar
  40. Jiang Z N, Feldstein S B, Lee S. 2017. The relationship between the Madden- Julian oscillation and the North Atlantic oscillation. Q J R Meteorol Soc, 143: 240–250CrossRefGoogle Scholar
  41. Jin E K, Kinter Iii J L, Wang B, Park C K, Kang I S, Kirtman B P, Kug J S, Kumar A, Luo J J, Schemm J, Shukla J, Yamagata T. 2008. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn, 31: 647–664CrossRefGoogle Scholar
  42. Kalnay E. 2011. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge: Cambridge University Press. 341Google Scholar
  43. Kang I S, Kim H M. 2010. Assessment of MJO predictability for boreal winter with various statistical and dynamical models. J Clim, 23: 2368–2378CrossRefGoogle Scholar
  44. Kawabe M. 1986. Transition processes between the three typical paths of the Kuroshio. J Oceanogr Soc Jpn, 42: 174–191CrossRefGoogle Scholar
  45. Kawabe M. 1995. Variations of current path, velocity, and volume transport of the kuroshio in relation with the large meander. J Phys Oceanogr, 25: 3103–3117CrossRefGoogle Scholar
  46. Keenlyside N S, Latif M, Jungclaus J, Kornblueh L, Roeckner E. 2008. Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453: 84–88CrossRefGoogle Scholar
  47. Kerr R A. 2000. A north Atlantic climate pacemaker for the centuries. Science, 288: 1984–1986CrossRefGoogle Scholar
  48. Kim H M, Webster P J, Curry J A. 2012. Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys Res Lett, 39: L10701Google Scholar
  49. Kirtman B, Power S B, Adedoyin J A, Boer G J, Bojariu R, Camilloni I, Doblas-Reyes F, Fiore A M. 2013. Near-term Climate change: Projections and predictability. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University PressGoogle Scholar
  50. Kirtman B P, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak S. 2002. Current status of ENSO forecast skill: A report to the Climate Variability and Predictability Numerical Experimentation Group. CLIVAR Working Group on Seasonal to Interannual PredictionGoogle Scholar
  51. Kleeman R, Moore A M. 1997. A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci, 54: 753–767CrossRefGoogle Scholar
  52. Kushnir Y. 1994. Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim, 7: 141–157CrossRefGoogle Scholar
  53. Leith C E. 1974. Theoretical skill of Monte Carlo forecasts. Mon Weather Rev, 102: 409–418CrossRefGoogle Scholar
  54. Leith C E, Kraichnan R H. 1972. Predictability of turbulent flows. J Atmos Sci, 29: 1041–1058CrossRefGoogle Scholar
  55. Leutbecher M, Palmer T N. 2008. Ensemble forecasting. J Comp Phys, 227: 3515–3539CrossRefGoogle Scholar
  56. Li J P, Ding R Q. 2015. Seasonal and interannual weather prediction. In: North G, Pyle J, Zhang F, eds. Encyclopedia of Atmospheric Sciences, 2nd ed. London: Academic Press and Elsevier. 303–312CrossRefGoogle Scholar
  57. Li S L, Bates G T. 2007. Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv Atmos Sci, 24: 126–135CrossRefGoogle Scholar
  58. Li S L, Ji L R, Lin W T, Ni Y Q. 2001. The maintenance of the blocking over the ural mountains during the second Meiyu period in the summer of 1998. Adv Atmos Sci, 18: 87–105CrossRefGoogle Scholar
  59. Liebmann B, Hendon H H, Glick J D. 1994. The relationship between tropical cyclones of the Western Pacific and Indian Oceans and the Madden- Julian oscillation. J Meteorol Soc Jpn, 72: 401–412CrossRefGoogle Scholar
  60. Lorenz E N. 1963. Deterministic nonperiodic flow. J Atmos Sci, 20: 130–141CrossRefGoogle Scholar
  61. Lorenz E N. 1969. The predictability of a flow which possesses many scales of motion. Tellus, 21: 289–307CrossRefGoogle Scholar
  62. Lorenz E N. 1975. Climatic predictability in the physical basis of climate and climate modeling. WMO GARP Publ. Ser No, 16: 132–136Google Scholar
  63. Lu R, Dong B, Ding H. 2006. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett, 33: L24701CrossRefGoogle Scholar
  64. Luo J J, Masson S, Behera S, Shingu S, Yamagata T. 2005. Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim, 18: 4474–4497CrossRefGoogle Scholar
  65. Luo J J, Masson S, Behera S, Yamagata T. 2007. Experimental forecasts of the indian ocean dipole using a coupled OAGCM. J Clim, 20: 2178–2190CrossRefGoogle Scholar
  66. Luo J J, Masson S, Behera S K, Yamagata T. 2008. Extended ENSO predictions using a fully coupled ocean-atmosphere model. J Clim, 21: 84–93CrossRefGoogle Scholar
  67. Madden R A, Julian P R. 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci, 28: 702–708CrossRefGoogle Scholar
  68. Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci, 29: 1109–1123CrossRefGoogle Scholar
  69. Matsueda M, Kyouda M, Toth Z, Tanaka H L, Tsuyuki T. 2011. Predictability of an atmospheric blocking event that occurred on 15 December 2005. Mon Weather Rev, 139: 2455–2470CrossRefGoogle Scholar
  70. Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteorol Soc, 78: 1069–1079CrossRefGoogle Scholar
  71. McPhaden M J, Zebiak S E, Glantz M H. 2006. ENSO as an integrating concept in Earth science. Science, 314: 1740–1745CrossRefGoogle Scholar
  72. Meehl G A, Goddard L, Boer G, Burgman R, Branstator G, Cassou C, Corti S, Danabasoglu G, Doblas-Reyes F, Hawkins E, Karspeck A, Kimoto M, Kumar A, Matei D, Mignot J, Msadek R, Navarra A, Pohlmann H, Rienecker M, Rosati T, Schneider E, Smith D, Sutton R, Teng H, van Oldenborgh G J, Vecchi G, Yeager S. 2014. Decadal climate prediction: An update from the trenches. Bull Amer Meteorol Soc, 95: 243–267CrossRefGoogle Scholar
  73. Minobe S. 1999. Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys Res Lett, 26: 855–858CrossRefGoogle Scholar
  74. Miyazawa Y, Zhang R, Guo X, Tamura H, Ambe D, Lee J S, Okuno A, Yoshinari H, Setou T, Komatsu K. 2009. Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis. J Oceanogr, 65: 737–756CrossRefGoogle Scholar
  75. Mochizuki T, Chikamoto Y, Kimoto M, Ishii M, Tatebe H, Komuro Y, Sakamoto T T, Watanabe M, Mori M. 2012. Decadal prediction using a recent series of MIROC global climate models. J Meteorol Soc Jpn, 90A: 373–383CrossRefGoogle Scholar
  76. Moore A M, Kleeman R. 1996. The dynamics of error growth and predictability in a coupled model of ENSO. Q J R Meteorol Soc, 122: 1405–1446CrossRefGoogle Scholar
  77. Mu M, Duan W, Wang Q, Zhang R. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlin Processes Geophys, 17: 211–220CrossRefGoogle Scholar
  78. Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlin Processes Geophys, 10: 493–501CrossRefGoogle Scholar
  79. Mu M, Wansuo D, Chou J F. 2004. Recent advances in predictability studies in China (1999–2002). Adv Atmos Sci, 21: 437–443CrossRefGoogle Scholar
  80. Mu M, Duan W S, Wang B. 2007a. Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J Geophys Res, 112: D10113CrossRefGoogle Scholar
  81. Mu M, Xu H, Duan W S. 2007b. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys Res Lett, 34: L03709CrossRefGoogle Scholar
  82. Mu M, Zhou F, Wang H. 2009. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon Weather Rev, 137: 1623–1639CrossRefGoogle Scholar
  83. Mu M. 2013. Methods, current status, and prospect of targeted observation. Sci China Earth Sci, 56: 1997–2005CrossRefGoogle Scholar
  84. Palmer T N, Branković, Molteni F, Tibaldi S. 1990. Extended-range predictions with ecmwf models: Interannual variability in operational model integrations. Q J R Meteorol Soc, 116: 799–834CrossRefGoogle Scholar
  85. Palmer T N, Döring A, Seregin G. 2014. The real butterfly effect. Nonlinearity, 27: R123–R141CrossRefGoogle Scholar
  86. Philander S G. 1990. El Niño, La Nina, and the Southern Oscillation. London: Academic PressGoogle Scholar
  87. Pohlmann H, Jungclaus J H, Köhl A, Stammer D, Marotzke J. 2009. Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the north Atlantic. J Clim, 22: 3926–3938CrossRefGoogle Scholar
  88. Polyakov I V, Alekseev G V, Bekryaev R V, Bhatt U S, Colony R, Johnson M A, Karklin V P, Walsh D, Yulin A V. 2003. Long-term ice variability in Arctic marginal seas. J Clim, 16: 2078–2085CrossRefGoogle Scholar
  89. Rabier F, Gauthier P, Cardinali C, Langland R, Tsyrulnikov M, Lorenc A, Steinle P, Gelaro R, Koizumi K. 2008. An update on THORPEX-related research in data assimilation and observing strategies. Nonlin Processes Geophys, 15: 81–94CrossRefGoogle Scholar
  90. Rashid H A, Hendon H H, Wheeler M C, Alves O. 2011. Prediction of the Madden-Julian oscillation with the POAMA dynamical prediction system. Clim Dyn, 36: 649–661CrossRefGoogle Scholar
  91. Razavi S, Gupta H V. 2015. What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in Earth and Environmental systems models. Water Resour Res, 51: 3070–3092CrossRefGoogle Scholar
  92. Rex D F. 1950. Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 2: 275–301Google Scholar
  93. Riehl H, Haggard W H, Sanborn R W. 1956. On the prediction of 24-hour hurricane motion. J Meteor, 13: 415–420CrossRefGoogle Scholar
  94. Ruiz-Barradas A, Nigam S, Kavvada A. 2013. The Atlantic multidecadal oscillation in twentieth century climate simulations: Uneven progress from CMIP3 to CMIP5. Clim Dyn, 41: 3301–3315CrossRefGoogle Scholar
  95. Saji N H, Yamagata T. 2003. Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J Clim, 16: 2735–2751CrossRefGoogle Scholar
  96. Schlesinger M E, Ramankutty N. 1994. An oscillation in the global climate system of period 65–70 years. Nature, 367: 723–726CrossRefGoogle Scholar
  97. Seo K H, Wang W. 2010. The Madden–Julian oscillation simulated in the NCEP climate forecast system model: The importance of stratiform heating. J Clim, 23: 4770–4793CrossRefGoogle Scholar
  98. Sheffield J, Barrett A P, Colle B, Nelun Fernando D, Fu R, Geil K L, Hu Q, Kinter J, Kumar S, Langenbrunner B, Lombardo K, Long L N, Maloney E, Mariotti A, Meyerson J E, Mo K C, David Neelin J, Nigam S, Pan Z, Ren T, Ruiz-Barradas A, Serra Y L, Seth A, Thibeault J M, Stroeve J C, Yang Z, Yin L. 2013. North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J Clim, 26: 9209–9245CrossRefGoogle Scholar
  99. Shi L, Hendon H H, Alves O, Luo J J, Balmaseda M, Anderson D. 2012. How predictable is the Indian Ocean dipole? Mon Weather Rev, 140: 3867–3884CrossRefGoogle Scholar
  100. Shi M C. 2004. Physical Oceanography. Jinan: Shandong Education Press. 462Google Scholar
  101. Si D, Ding Y. 2016. Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J Clim, 29: 7633–7649CrossRefGoogle Scholar
  102. Sitch S, Smith B, Prentice I C, Arneth A, Bondeau A, Cramer W, Kaplan J O, Levis S, Lucht W, Sykes M T, Thonicke K, Venevsky S. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol, 9: 161–185CrossRefGoogle Scholar
  103. Snyder C. 1996. Summary of an informal workshop on adaptive observations and FASTEX. Bull Amer Meteorol Soc, 77: 953–961Google Scholar
  104. Song Y, Yu Y Q, Lin P F. 2014. The hiatus and accelerated warming decades in CMIP5 simulations. Adv Atmos Sci, 31: 1316–1330CrossRefGoogle Scholar
  105. Sun G D, Mu M. 2011. Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem. Nonlin Processes Geophys, 18: 883–893CrossRefGoogle Scholar
  106. Sun G D, Mu M. 2013. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim Change, 120: 755–769CrossRefGoogle Scholar
  107. Sun G D, Mu M. 2017. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example. Theor Appl Climatol, 128: 587–601CrossRefGoogle Scholar
  108. Sun J H, Zhao S X. 2010. The impacts of multiscale weather systems on freezing rain and snowstorms over Southern China. Weather Forecast, 25: 388–407CrossRefGoogle Scholar
  109. Thompson P D. 1957. Uncertainty of the initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9: 275–295CrossRefGoogle Scholar
  110. Tibaldi S, Tosi E, Navarra A, Pedulli L. 1994. Northern and Southern Hemisphere seasonal variability of blocking frequency and predictability. Mon Weather Rev, 122: 1971–2003CrossRefGoogle Scholar
  111. Tong H W, Chan J C L, Zhou W. 2009. The role of MJO and mid-latitude fronts in the South China Sea summer monsoon onset. Clim Dyn, 33: 827–841CrossRefGoogle Scholar
  112. Trenberth K E, Branstator G W, Karoly D, Kumar A, Lau N C, Ropelewski C. 1998. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res, 103: 14291–14324CrossRefGoogle Scholar
  113. Tribbia J J, Baumhefner D P. 2004. Scale interactions and atmospheric predictability: An updated perspective. Mon Weather Rev, 132: 703–713CrossRefGoogle Scholar
  114. Vecchi G A, Harrison D E. 2004. Interannual Indian rainfall variability and Indian Ocean sea surface temperature anomalies. Earth’s Clim, 147: 247–259Google Scholar
  115. Vitart F. 2014. Evolution of ECMWF sub-seasonal forecast skill scores. Q J R Meteorol Soc, 140: 1889–1899CrossRefGoogle Scholar
  116. Wajsowicz R C. 2004. Climate variability over the tropical Indian Ocean sector in the NSIPP seasonal forecast system. J Clim, 17: 4783–4804CrossRefGoogle Scholar
  117. Wang Q, Mu M, Dijkstra H A. 2013. Effects of nonlinear physical processes on optimal error growth in predictability experiments of the Kuroshio Large Meander. J Geophys Res-Oceans, 118: 6425–6436CrossRefGoogle Scholar
  118. Wang Y, Li S, Luo D. 2009. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J Geophys Res, 114: D02112Google Scholar
  119. Wu Y J, Duan W S, Rong X Y. 2016. Seasonal predictability of sea surface temperature anomalies over the Kuroshio-Oyashio Extension: Low in summer and high in winter. J Geophys Res-Oceans, 121: 6862–6873CrossRefGoogle Scholar
  120. Xu H M, Tokinaga H, Xie S P. 2010. Atmospheric effects of the Kuroshio large meander during 2004–05. J Clim, 23: 4704–4715CrossRefGoogle Scholar
  121. Yu Y, Mu M, Duan W S. 2012a. Does model parameter error cause a significant “spring predictability barrier” for El Niño events in the Zebiak-Cane Model? J Clim, 25: 1263–1277CrossRefGoogle Scholar
  122. Yu Y, Mu M, Duan W, Gong T. 2012b. Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J Geophys Res, 117: C06018Google Scholar
  123. Zhang C. 2005. Madden-Julian oscillation. Rev Geophys, 43: RG2003Google Scholar
  124. Zhang C D. 2013. Madden-Julian oscillation: Bridging weather and climate. Bull Amer Meteorol Soc, 94: 1849–1870CrossRefGoogle Scholar
  125. Zhang F, Snyder C, Rotunno R. 2003. Effects of moist convection on mesoscale predictability. J Atmos Sci, 60: 1173–1185CrossRefGoogle Scholar
  126. Zhang F. 2005. Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon Weather Rev, 133: 2876–2893CrossRefGoogle Scholar
  127. Zhang Y, Wallace J M, Battisti D S. 1997. ENSO-like interdecadal variability: 1900–93. J Clim, 10: 1004–1020CrossRefGoogle Scholar
  128. Zhang Z G, Wang W, Qiu B. 2016. Oceanic mass transport by mesoscale eddies. Science, 345: 322–324CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Atmospheric SciencesFudan UniversityShanghaiChina
  2. 2.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  3. 3.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.College of Earth SciencesUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.Second Institute of OceanographyState Oceanic AdministrationHangzhouChina

Personalised recommendations