Skip to main content
Log in

Glacial atmospheric CO2 decline in association with decrease of marine sedimentary phosphorus

  • Published:
Science in China Series D Aims and scope Submit manuscript

Abstract

The environmental and biogeochemical information extracted from the sediments collected from the northern shelf of the South China Sea shows that terrigenous inputs of phosphorus into the sea remained relatively constant, and the variation of phosphorus contents at different depths was caused by climatic and environmental changes. The findings also suggest that the vertical variation of phosphorus content was opposite to those of calcium carbonate and cadmium, and the functional correlation between CO2 and PO 3−4 in seawater was given by calculating the chemical equilibrium, indicating that the accumulation of marine sedimentary phosphorus may have something to do with the variation of atmospheric CO2. The decreased phosphorus accumulation as well as the correspondingly-increased calcium carbonate content might be one of key factors causing glacial atmospheric CO2 decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnola, J. M., Raynaud, E., Korolkevich, Y. S. et al., Vostok icecore provides 160000-year record of atmospheric CO2, Nature, 1987, 329: 408–414.

    Article  Google Scholar 

  2. Coale, K. H., Johnson, K. S., Fitzwater, S. E. et al., A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean, Nature, 1996, 383: 495–501.

    Article  Google Scholar 

  3. Martin, J. H., Glacial_interglacial CO2 change: the iron hypothesis, Paleoceanography, 1990, 5: 1–13.

    Article  Google Scholar 

  4. Watson, A. J., Backer, D. C. E., Ridgwell, A. J. et al., Effect of iron supply on southern ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 2000, 407: 730–733.

    Article  Google Scholar 

  5. Lefever, N., Watson, A. J., Modelling the geochemical cycle of iron in the oceans and its impact on atmospheric carbon dioxide concentrations, Global Biogeochemical Cycles, 1999, 13: 727–736.

    Article  Google Scholar 

  6. Morales, M. A., Rahmstorf, S., Did Antarctic sea-ice expansion cause glacial CO2 decline? Geophysical Research Letters, 2002, 29(1): 13240–13246.

    Google Scholar 

  7. Holland, H. D., The phosphate-oxygen connection, Ocean Sciences Meeting, Washington DC: American Geophysical Union, 1994, 96.

    Google Scholar 

  8. Tyrrell, T., The relative influences of nitrogen and phosphorus on oceanic primary production, Nature, 1999, 400: 525–531.

    Article  Google Scholar 

  9. Weng, H. X., Presley, B. J., Armstrong, D., Distribution of sedimentary phosphorus in Gulf of Mexico estuaries, Marine Environmental Research, 1994, 37(4): 375–392.

    Article  Google Scholar 

  10. Froelich, D. N., The marine phosphorus cycle, American Journal of Science, 1982, 282: 474–511.

    Article  Google Scholar 

  11. Milliman, J. D., Meade, R. H., World-wide delivery of river sediment to the ocean, Journal of Geology, 1983, 91(1): 1–21.

    Article  Google Scholar 

  12. Feel, R. A., Trefry, J. H., Lebon, G. T. et al., The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater, Geophysical Research Letters, 1998, 25(13): 2253–2256.

    Article  Google Scholar 

  13. Weng, H. X., Zhang, X. M., Wu, N. Y. et al., Environmental and biogeochemical process of accumulation of iron-phosphorus in marine sediments, Chinese Science Bulletin, 2004, 49(9): 931–937.

    Article  Google Scholar 

  14. Pflaumann, U., Jian, Z., Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: a new transfer technique to estimate regional sea-surface temperatures, Marine Geology, 1999, 156: 41–83.

    Article  Google Scholar 

  15. Wang, L., Sarnthein, M., Erlenkeuser, H. et al., East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea, Marine Geology, 1999, 156: 245–284.

    Article  Google Scholar 

  16. Wang, L. J., Isotope stratigraphy and sedimentary history in the north of the South China Sea during Late Quaternary, in Study on Paleoceanography of the South China Sea since Late Quaternary (in Chinese), Qingdao: Press of Ocean University of Qingdao, 1992, 11–22.

    Google Scholar 

  17. Bian, Y. H., Cycle of dissolution of pelagic foraminifera in the north of the South China Sea during Late Quaternary, in Study on Paleoceanography of the South China Sea since Late Quaternary (in Chinese), Qingdao: Press of Ocean University of Qingdao, 1992, 261–273.

    Google Scholar 

  18. Qian, J. X., Study on Paleoceanography of the South China Sea Since Late Quaternary (in Chinese), Beijing: Science Press, 1999, 68–70.

    Google Scholar 

  19. Sarnthein, M., Pflaumann, U., Wang, P. X. et al., Preliminary report on Sonne-95 Cruise “Monitor Monsoon” to the South China Sea, Geol-Palanot., Inst. Univ. Kiel, 1994, 68 and 125.

  20. Wei, G. Y., Late period in the northeast of the South China Sea—Holocene paleoceanography, Marine Geology and Quaternary Geology (in Chinese), 1999, 23: 341–353.

    Google Scholar 

  21. Thamban, M., Rao, V. P., Schneider, B., Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India, Marine Geology, 2002, 186: 527–539.

    Article  Google Scholar 

  22. Vanderaveroet, P., Miocene to Pleistocene clay mineral sedimentation on the New Jersey shelf, Oceanologica Acta, 2000, 23(1): 25–36.

    Article  Google Scholar 

  23. Colin, C., Turpin, L., Bertauxc, J. et al., Erosional history of the Himalayan and Burman ranges during the last two glacial-interglacial cycle, Earth and Planetary Science Letters, 1999, 171: 647–660.

    Article  Google Scholar 

  24. Jian, Z. M., Wang, L. J., Markus, F. et al., Benthic foraminiferal paleoceanography of the South China Sea over the last 40000 years, Marine Geology, 1999, 156: 159–186.

    Article  Google Scholar 

  25. Thunell, R. C., Miao, Q., Calvert, S. E. et al., Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water CO2, Paleoceanography, 1992, 7: 143–162.

    Google Scholar 

  26. Sarnthein, M., Winn, K., Reconstruction of low and middle latitude export productivity, 30,000 years B.P. to present: implications for control of global carbon reservoirs (ed. M. E. Schlesinger), Climate-Ocean Interaction, Dordrecht: Kluwer Academic Publisher, 1990: 319–342.

    Google Scholar 

  27. Winn, K., Zheng, L., Erlenkeuser, H. et al., Oxygen/carbon isotopes and paleo-productivity in the South China Sea during the past 110,000 years, In: Marine Geology and Geophysics of the South China (eds. Jin, X., Kudrass, H. R., Pautot, G.) (in Chinese), Beijing: China Ocean Press, 1992, 154–166.

    Google Scholar 

  28. Zhao, Q. Y., Marine Geochemistry (in Chinese), Beijing: Geological Publishing House, 1989, 14–15, 188–192.

    Google Scholar 

  29. McElroy, M. B., Marine biological controls on atmospheric CO2 and climate, Nature, 1983, 302: 329–329.

    Article  Google Scholar 

  30. Schulz, H. D., Zabel, M., Marine Geochemistry, Berlin: Springer-Verlag, 2000, 289–292.

    Google Scholar 

  31. Broecker, W. S., Glacial to interglacial changes in ocean chemistry, Progress in Oceanography, 1982, 11: 151–197.

    Article  Google Scholar 

  32. Hinojosa, F. D., Zamora, J. V. M., Zavala, J. A. S. et al., Cadmium enrichment in the Gulf of California, Marine Chemistry, 2001, 75: 109–122.

    Article  Google Scholar 

  33. McIntyre, K., Ravelo, A. C., Delaney, M. L. et al., Ground truthing the Cd/Ca-carbon isotope relationship in foraminifera of the Greenland-Iceland-Norwegian Seas, Marine Geology, 1997, 140: 61–73.

    Article  Google Scholar 

  34. Frew, R. D., Hunter, K. A., Cadmium-phosphorus cycling at the subtropical convergence south of New Zealand, Marine Chemistry, 1995, 51: 223–237.

    Article  Google Scholar 

  35. Hall, R., Hydes, D. J., Statham, P. J. et al., Dissolved and particulate trace metals in a Scottish Sea Loch: an example of pristine environment? Marine Pollution Bulletin, 1996, 32(12): 846–854.

    Article  Google Scholar 

  36. Schneider, B., Pohl, C., Time series for dissolved cadmium at a coastal station in the Western Baltic Sea, Journal of Marine System, 1996, 9: 159–170.

    Article  Google Scholar 

  37. Levin, A. L., Filippelli, G. M., Delaney, M. L. et al., Glacial/interglacial variation in phosphorus accumulation rates in equatorial Pacific sediments, Ocean Sciences Meeting, Washington DC: American Geophysical Union, 1994, 111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weng Huanxin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, H., Zhang, X., Wu, N. et al. Glacial atmospheric CO2 decline in association with decrease of marine sedimentary phosphorus. SCI CHINA SER D 49, 322–330 (2006). https://doi.org/10.1007/s11430-006-0322-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-006-0322-8

Keywords

Navigation