Mikrobiom – Bedeutung für die Manifestation des Diabetes

Microbiome—importance for the manifestation of diabetes

Zusammenfassung

Bei Diabetes handelt es sich um eine chronische Erkrankung mit klassischer Gen-Umwelt-Problematik. Während man sich bezüglich der Umweltfaktoren über viele Jahre vorwiegend mit Ernährung und Bewegung beschäftigt hatte, gerät mehr und mehr auch die Darmmikrobiota als modifizierbarer Faktor in das wissenschaftliche Blickfeld. Bei Diabetespatienten ist nicht nur deren Artenvielfalt reduziert (Diversität), sondern auch die Häufigkeiten (Abundanz) spezifischer Spezies sind verändert. Darmbakterien können über eine Aufspaltung an sich unverdaulicher Nahrungsbestandteile die Verfügbarkeit von Energiesubstraten erhöhen, z. B. durch Freisetzung kurzkettiger Fettsäuren aus Ballaststoffen. Daneben induzieren spezifische Bakterien eine niedrigschwellige Entzündung im Darm, die sich in den gesamten Körper bis in das Gehirn ausbreiten kann. Als wichtige Signalmoleküle in der Interaktion von Mikrobe und Mensch erwiesen sich Gallensäuren, die von Bakterien modifiziert werden und dann nicht nur für die Fettverdauung von Bedeutung sind, sondern über die Aktivierung spezifischer Rezeptoren auf Leberzellen den Glukose- und Fettstoffwechsel beeinflussen. Daneben wurden auch bakterielle Stoffwechselprodukte von Nahrungsfetten und Aminosäuren als neue Signalmoleküle mit der Entwicklung einer Insulinresistenz und eines Typ-2-Diabetes des Menschen in Zusammenhang gebracht. Diese Erkenntnisse werden die Mikrobiota zukünftig als neues therapeutisches Zielorgan definieren, für innovative Behandlungsmethoden der zunehmenden Zahl von Diabetespatienten weltweit.

Abstract

Diabetes represents a chronic disease with disturbances in the gene–environment interaction. While in the past the focus of attention was on environmental factors such as nutrition and exercise, the gut microbiome is increasingly gaining scientific attention as a potential modifier in the pathogenesis of type 2 diabetes. Patients with diabetes exhibit not only a reduction in richness of species (diversity) but also in the number of specific bacteria (abundance). Gut microbes are able to increase the energy supply by digesting otherwise undigestible nutritional components such as fiber, releasing so-called small chain fatty acids. In addition, gut microbes can induce low-grade inflammation in the intestinal wall which can spread throughout the whole human organism including the brain. Bile acids are known as important signalling factors in the host–microbe interaction, whereby these molecules are not only important in the digestion of fat, but they also activate specific receptors on the surface of hepatocytes, thereby influencing the metabolism of glucose and lipids. Furthermore, the microbiome produces specific bacterial metabolites from nutritional fat or amino acids as novel signalling molecules regulating insulin sensitivity of the human host. These findings support the gut microbiome as a potential future target for the development of innovative diabetes therapies.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Literatur

  1. 1.

    Schroeder BO, Bäckhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22(10):1079–1089

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Hyland N, Stanton C (Hrsg) (2016) The gut-brain axis: dietary, probiotic, and prebiotic interventions on the microbiota. Elsevier/Academic Press, Amsterdam, S 486

    Google Scholar 

  3. 3.

    Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11(4):227–238

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Schippa S, Conte MP (2014) Dysbiotic events in gut microbiota: impact on human health. Nutrients 6(12):5786–5805

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Fei N, Zhao L (2013) An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 7(4):880–884

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vila AV, Võsa U et al (2019) Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51(4):600–605

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Li X, Watanabe K, Kimura I (2017) Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Front Immunol 8:1882. https://doi.org/10.3389/fimmu.2017.01882

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Saad MJA, Santos A, Prada PO (2016) Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology 31(4):283–293

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Salguero MV, Al-Obaide MAI, Singh R, Siepmann T, Vasylyeva TL (2019) Dysbiosis of gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease. Exp Ther Med 18(5):3461–3469

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mobini R, Tremaroli V, Ståhlman M, Karlsson F, Levin M, Ljungberg M et al (2017) Metabolic effects of lactobacillus reuteri DSM 17938 in people with type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab 19(4):579–589

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Chen J, Rao JN, Zou T, Liu L, Marasa BS, Xiao L et al (2007) Polyamines are required for expression of toll-like receptor 2 modulating intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 293(3):G568–76

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Liu L, Guo X, Rao JN, Zou T, Xiao L, Yu T et al (2009) Polyamines regulate E‑cadherin transcription through c‑Myc modulating intestinal epithelial barrier function. Am J Physiol, Cell Physiol 296(4):C801–10

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  15. 15.

    Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki E et al (2014) Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 4:4548. https://doi.org/10.1038/srep04548

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF et al (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147(3):629–640

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Deehan EC, Duar RM, Armet AM, Perez-Muñoz ME, Jin M, Walter J (2017) Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human. Health. https://doi.org/10.1128/microbiolspec.BAD-0019-2017

    Article  Google Scholar 

  18. 18.

    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinction in the gut microbiota compounds over generations. Nature 529(7585):212–215

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G et al (2017) Seasonal cycling in the gut microbiome of the Hadza Hunter-gatherers of Tanzania. Science 357(6353):802–806

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Makki K, Deehan EC, Walter J, Bäckhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23(6):705–715

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Koh A, Vadder FD, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Sluijs I, Forouhi NG, Beulens JW, Van der Schouw YT, Agnoli C et al (2012) The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct study. Am J Clin Nutr 96(2):382–390

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X et al (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11(8):2112–2122

    PubMed  Article  Google Scholar 

  25. 25.

    Chiang JYL (2009) Bile acids: regulation of synthesis. J Lipid Res 50(10):1955–1966

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Wahlström A, Sayin SI, Marschall H‑U, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Aron-Wisnewsky J, Clément K (2016) The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 12(3):169–181

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT et al (2013) Intestinal microbiota metabolism of L‑carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    CAS  Article  Google Scholar 

  30. 30.

    Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault M‑C, Carbonnel F (2010) Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol 105(10):2195–2201

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Ijssennagger N, van der Meer R, van Mil SWC (2016) Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med 22(3):190–199

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Devkota S, Wang Y, Musch M, Leone V, Fehlner-Peach H, Nadimpalli A et al (2012) Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice. Nature 487(7405):104–108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Salas-Salvadó J, Bulló M, Estruch R, Ros E, Covas M‑I, Ibarrola-Jurado N et al (2014) Prevention of diabetes with mediterranean diets: a subgroup analysis of a randomized trial. Ann Intern Med 160(1):1–10

    PubMed  Article  Google Scholar 

  34. 34.

    Zinöcker MK, Lindseth IA (2018) The western diet—microbiome-host interaction and its role in metabolic disease. Nutrients 10(3):365. https://doi.org/10.3390/nu10030365

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  35. 35.

    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M et al (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD et al (2017) Parkinson’s disease and PD medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Li Q, Han Y, Dy ABC, Hagerman RJ (2017) The gut Microbiota and autism spectrum disorders. Front Cell Neurosci. https://doi.org/10.3389/fncel.2017.00120

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Kreutzer C, Peters S, Schulte DM, Fangmann D, Türk K, Wolff S et al (2017) Hypothalamic inflammation in human obesity is mediated by environmental and genetic factors. Diabetes 66(9):2407–2415

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Logsdon AF, Erickson MA, Rhea EM, Salameh TS, Banks WA (2018) Gut reactions: how the blood-brain barrier connects the microbiome and the brain. Exp Biol Med (Maywood) 243(2):159–165

    CAS  Article  Google Scholar 

  40. 40.

    Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263):263ra158

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L et al (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and CNS inflammation via the aryl hydrocarbon receptor. Nat Med 22(6):586–597

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916.e7

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Marotz CA, Zarrinpar A (2016) Treating obesity and metabolic syndrome with fecal microbiota transplantation. Yale J Biol Med 89(3):383–388

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104(3):979–984

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in Western infants. Acta Paediatr 98(2):229–238

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Univ.-Prof. Dr. med. Matthias Laudes.

Ethics declarations

Interessenkonflikt

L. Henneke und M. Laudes geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henneke, L., Laudes, M. Mikrobiom – Bedeutung für die Manifestation des Diabetes. Diabetologe (2021). https://doi.org/10.1007/s11428-021-00716-0

Download citation

Schlüsselwörter

  • Mikrobiota
  • Gastrointestinales Mikrobiom
  • Mikrobielle Interaktionen
  • Gallensäuren und -salze
  • Metabolische Entzündung

Keywords

  • Microbiota
  • Gastrointestinal microbiome
  • Microbial interactions
  • Bile acids and salts
  • Inflammation, metabolic