Skip to main content
Log in

Pathomechanismen der diabetischen Retinopathie

Pathomechanisms of diabetic retinopathy

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Die Entstehung der diabetischen Retinopathie hängt eng mit der Störung der inneren Blut-Retina-Schranke zusammen. Gleichzeitig werden Schädigungsmechanismen der Neurodegeneration beobachtet, die über Gliazellen vermittelt und bei bisherigen Einteilungen der diabetischen Retinopathie nur unzureichend berücksichtigt werden. Bezüglich der Pathophysiologie der diabetischen Retinopathie wurden inzwischen viele Erkenntnisse, v. a. aus Tiermodellen, histologischen Studien oder Messungen von Zytokinen im Kammerwasser und im Glaskörper von Menschen mit Diabetes, gewonnen. Therapeutische Konsequenzen haben sich aber bisher insbesondere aus dem Wissen über die Pathogenese der mikrovaskulären Veränderungen abgeleitet, indem der permeabilitätssteigernde „vascular endothelial growth factor“ gehemmt wird oder entzündungshemmende Steroide genutzt werden.

Abstract

The pathogenesis of diabetic retinopathy (DR) is closely linked to disruption of the inner blood-retinal barrier; however, there is also an ongoing process of inflammation-driven neurodegeneration from the beginning, triggered by glial cell activity but insufficiently taken into consideration for previous classifications of DR. With respect to the pathophysiology of DR, profound knowledge has been gained from animal models, histopathological studies of human tissue and the biochemical analysis of cytokines in samples from the anterior chamber and vitreous body; however, so far only insights into the microvascular changes and mainly those driven by angiogenic factors, such as vascular endothelial growth factor (VEGF), are reflected in therapeutic approaches as are the pleiotropic actions triggered by local steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Boss JD, Singh PK, Pandya HK et al (2017) Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 58:5594–5603. https://doi.org/10.1167/iovs.17-21973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chang Y‑C, Wu W‑C (2013) Dyslipidemia and diabetic retinopathy. Rev Diabet Stud 10:121–132. https://doi.org/10.1900/RDS.2013.10.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Daruich A, Matet A, Moulin A et al (2018) Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 63:20–68. https://doi.org/10.1016/j.preteyeres.2017.10.006

    Article  PubMed  Google Scholar 

  4. Davis MD, Sheetz MJ, Aiello LP et al (2009) Effect of ruboxistaurin on the visual acuity decline associated with long-standing diabetic macular edema. Invest Ophthalmol Vis Sci 50:1–4. https://doi.org/10.1167/iovs.08-2473

    Article  PubMed  Google Scholar 

  5. Friedrichs P, Schlotterer A, Sticht C et al (2017) Hyperglycaemic memory affects the neurovascular unit of the retina in a diabetic mouse model. Diabetologia 60:1354–1358. https://doi.org/10.1007/s00125-017-4254-y

    Article  CAS  PubMed  Google Scholar 

  6. Gardner TW, Abcouwer SF, Barber AJ, Jackson GR (2011) An integrated approach to diabetic retinopathy research. Arch Ophthalmol 129:230–235. https://doi.org/10.1001/archophthalmol.2010.362

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gella L, Raman R, Kulothungan V et al (2015) Impairment of colour vision in diabetes with no retinopathy: Sankara Nethralaya Diabetic Retinopathy Epidemiology And Molecular Genetics Study (SNDREAMS- II, report 3). PLoS ONE 10:e129391. https://doi.org/10.1371/journal.pone.0129391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hammes H‑P (2005) Pericytes and the pathogenesis of diabetic retinopathy. Horm Metab Res 37(Suppl 1):39–43. https://doi.org/10.1055/s-2005-861361

    Article  CAS  PubMed  Google Scholar 

  9. Hammes H‑P (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61:29–38. https://doi.org/10.1007/s00125-017-4435-8

    Article  PubMed  Google Scholar 

  10. Hammes H‑P (2018) Medikamentöse Therapie der diabetischen Retinopathie – Die diabetologische Perspektive. Diabetologe. https://doi.org/10.1007/s11428-018-0372-5

    Article  Google Scholar 

  11. Hosoya K, Tachikawa M (2012) The inner blood-retinal barrier: molecular structure and transport biology. Adv Exp Med Biol 763:85–104

    CAS  PubMed  Google Scholar 

  12. Jiang M‑S, Yuan Y, Gu Z‑X, Zhuang S‑L (2016) Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol 100:9–14. https://doi.org/10.1136/bjophthalmol-2014-306038

    Article  PubMed  Google Scholar 

  13. Klein R, Klein BE, Moss SE, Cruickshanks KJ (1995) The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 102:7–16

    Article  CAS  PubMed  Google Scholar 

  14. Lakk M, Vazquez-Chona F, Yarishkin O, Križaj D (2018) Dyslipidemia modulates Müller glial sensing and transduction of ambient information. Neural Regen Res 13:207–210. https://doi.org/10.4103/1673-5374.226383

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lange CAK, Stavrakas P, Luhmann UFO et al (2011) Intraocular oxygen distribution in advanced proliferative diabetic retinopathy. Am J Ophthalmol 152:406–412.e3. https://doi.org/10.1016/j.ajo.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  16. Milne R, Brownstein S (2013) Advanced glycation end products and diabetic retinopathy. Amino Acids 44:1397–1407. https://doi.org/10.1007/s00726-011-1071-3

    Article  CAS  PubMed  Google Scholar 

  17. Moran EP, Wang Z, Chen J et al (2016) Neurovascular cross talk in diabetic retinopathy: pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol 311:H738–H749. https://doi.org/10.1152/ajpheart.00005.2016

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rabbani N, Thornalley PJ (2018) Glyoxalase 1 modulation in obesity and diabetes. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7424

    Article  PubMed  Google Scholar 

  19. Rask-Madsen C, King GL (2013) Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 17:20–33. https://doi.org/10.1016/j.cmet.2012.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reddy MA, Zhang E, Natarajan R (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58:443–455. https://doi.org/10.1007/s00125-014-3462-y

    Article  CAS  PubMed  Google Scholar 

  21. Rübsam A, Parikh S, Fort PE (2018) Role of inflammation in diabetic retinopathy. Int J Mol Sci. https://doi.org/10.3390/ijms19040942

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sacks FM, Hermans MP, Fioretto P et al (2014) Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation 129:999–1008. https://doi.org/10.1161/CIRCULATIONAHA.113.002529

    Article  CAS  Google Scholar 

  23. Sato Y, Kamata A, Matsui M (1993) Clinical study of venous abnormalities in diabetic retinopathy. Jpn J Ophthalmol 37:136–142

    CAS  PubMed  Google Scholar 

  24. Schorr SG, Hammes H‑P, Müller UA et al (2016) The prevention and treatment of retinal complications in diabetes. Dtsch Arztebl Int 113:816–823. https://doi.org/10.3238/arztebl.2016.0816

    Article  Google Scholar 

  25. Sousa Silva M, Gomes RA, Ferreira AEN et al (2013) The glyoxalase pathway: the first hundred years... and beyond. Biochem J 453:1–15. https://doi.org/10.1042/BJ20121743

    Article  CAS  PubMed  Google Scholar 

  26. Verma A, Rani PK, Raman R et al (2009) Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye (Lond) 23:1824–1830. https://doi.org/10.1038/eye.2009.184

    Article  CAS  Google Scholar 

  27. Vujosevic S, Micera A, Bini S et al (2015) Aqueous humor biomarkers of Müller cell activation in diabetic eyes. Invest Ophthalmol Vis Sci 56:3913–3918. https://doi.org/10.1167/iovs.15-16554

    Article  CAS  PubMed  Google Scholar 

  28. Vujosevic S, Torresin T, Berton M et al (2017) Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities. Am J Ophthalmol 181:149–155. https://doi.org/10.1016/j.ajo.2017.06.026

    Article  PubMed  Google Scholar 

  29. Wu H, Hwang D‑K, Song X, Tao Y (2017) Association between aqueous cytokines and diabetic retinopathy stage. J Ophthalmol. https://doi.org/10.1155/2017/9402198

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yan L‑J (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. https://doi.org/10.1155/2014/137919

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yozgatli K, Lefrandt JD, Noordzij MJ et al (2018) Accumulation of advanced glycation end products is associated with macrovascular events and glycaemic control with microvascular complications in type 2 diabetes mellitus. Diabet Med. https://doi.org/10.1111/dme.13651

    Article  PubMed  Google Scholar 

  32. Yu C‑G, Yuan S‑S, Yang L‑Y et al (2018) Angiopoietin-like 3 is a potential biomarker for retinopathy in type 2 diabetic patients. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2018.03.040

    Article  PubMed  Google Scholar 

  33. German Ophthalmological Society, Retina Society, Professional Association of German Ophthalmologists (2013) Treatment of diabetic maculopathy. Ophthalmologe 110:568–588. https://doi.org/10.1007/s00347-013-2885-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjürgen Agostini.

Ethics declarations

Interessenkonflikt

H. Agostini, G. Martin und F. Ziemssen geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostini, H., Martin, G. & Ziemssen, F. Pathomechanismen der diabetischen Retinopathie. Diabetologe 14, 542–549 (2018). https://doi.org/10.1007/s11428-018-0409-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-018-0409-9

Schlüsselwörter

Keywords

Navigation